Generalized focal points and local Sturmian theory for linear Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134179" target="_blank" >RIV/00216224:14310/23:00134179 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3934/dcds.2023082" target="_blank" >https://doi.org/10.3934/dcds.2023082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2023082" target="_blank" >10.3934/dcds.2023082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized focal points and local Sturmian theory for linear Hamiltonian systems
Popis výsledku v původním jazyce
In this paper we present a new approach for the study of the oscillation properties of linear differential equations, in particular of linear Hamiltonian systems. We introduce a new notion of a generalized left focal point as well as its multiplicity, which do not depend on the validity of the traditionally assumed Legendre condition. Based on this notion we are able to develop a local (or pointwise) version of the Sturmian separation theorem, which provides a lower bound and an upper bound for the multiplicity of a generalized left focal point for any conjoined basis of the system. We apply this knowledge in several directions, such as (ⅰ) in the explanation of the exact role of the Legendre condition in the Sturmian theory, (ⅱ) in the second order optimality conditions for variational problems, (ⅲ) in the analysis of isolated and non-isolated generalized left focal points, and (ⅳ) in the study of the so-called anti-Legendre condition. As a main tool we use the comparative index and its properties. The results are new even for completely controllable linear Hamiltonian systems, including the Sturm–Liouville differential equations of arbitrary even order.
Název v anglickém jazyce
Generalized focal points and local Sturmian theory for linear Hamiltonian systems
Popis výsledku anglicky
In this paper we present a new approach for the study of the oscillation properties of linear differential equations, in particular of linear Hamiltonian systems. We introduce a new notion of a generalized left focal point as well as its multiplicity, which do not depend on the validity of the traditionally assumed Legendre condition. Based on this notion we are able to develop a local (or pointwise) version of the Sturmian separation theorem, which provides a lower bound and an upper bound for the multiplicity of a generalized left focal point for any conjoined basis of the system. We apply this knowledge in several directions, such as (ⅰ) in the explanation of the exact role of the Legendre condition in the Sturmian theory, (ⅱ) in the second order optimality conditions for variational problems, (ⅲ) in the analysis of isolated and non-isolated generalized left focal points, and (ⅳ) in the study of the so-called anti-Legendre condition. As a main tool we use the comparative index and its properties. The results are new even for completely controllable linear Hamiltonian systems, including the Sturm–Liouville differential equations of arbitrary even order.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05242S" target="_blank" >GA23-05242S: Oscilační teorie na hybridních časových doménách s aplikacemi ve spektrální teorii a maticové analýze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
1553-5231
Svazek periodika
43
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
4139-4173
Kód UT WoS článku
001044344800001
EID výsledku v databázi Scopus
2-s2.0-85176553055