Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134013" target="_blank" >RIV/00216224:14310/23:00134013 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00605-022-01780-4" target="_blank" >https://link.springer.com/article/10.1007/s00605-022-01780-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-022-01780-4" target="_blank" >10.1007/s00605-022-01780-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems
Popis výsledku v původním jazyce
In this paper we present an existence result for conjoined bases of nonoscillatory linear Hamiltonian systems on an unbounded interval, which have prescribed numbers of left and right proper focal points. The result is based on a singular Sturmian separation theorem on an unbounded interval by the authors (2019) and it extends a similar property, which was recently derived for linear Hamiltonian systems on compact interval (2021). At the same time it is new even for completely controllable linear Hamiltonian systems, including higher order Sturm–Liouville differential equations. As the main tools we use the comparative index and properties of the minimal principal solution at infinity, which serves as the reference solution for calculating the numbers of proper focal points. We also provide several examples illustrating the presented theory.
Název v anglickém jazyce
Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems
Popis výsledku anglicky
In this paper we present an existence result for conjoined bases of nonoscillatory linear Hamiltonian systems on an unbounded interval, which have prescribed numbers of left and right proper focal points. The result is based on a singular Sturmian separation theorem on an unbounded interval by the authors (2019) and it extends a similar property, which was recently derived for linear Hamiltonian systems on compact interval (2021). At the same time it is new even for completely controllable linear Hamiltonian systems, including higher order Sturm–Liouville differential equations. As the main tools we use the comparative index and properties of the minimal principal solution at infinity, which serves as the reference solution for calculating the numbers of proper focal points. We also provide several examples illustrating the presented theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
1436-5081
Svazek periodika
200
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
29
Strana od-do
359-387
Kód UT WoS článku
000876636600001
EID výsledku v databázi Scopus
2-s2.0-85140213986