Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Priestley-Chao Estimator of Conditional Density

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00095286" target="_blank" >RIV/00216224:14310/17:00095286 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26110/17:PU125904

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Priestley-Chao Estimator of Conditional Density

  • Popis výsledku v původním jazyce

    This contribution is focused on a non-parametric estimation of conditional density. Several types of kernel estimators of conditional density are known, the Nadaraya-Watson and the local linear estimators are the widest used ones. We focus on a new estimator - the Priestley-Chao estimator of conditional density. As conditional density can be regarded as a generalization of regression, the Priestley-Chao estimator, proposed initially for kernel regression, is extended for kernel estimation of conditional density. The conditional characteristics and the statistical properties of the suggested estimator are derived. The estimator depends on the smoothing parameters called bandwidths which influence the final quality of the estimate significantly. The cross-validation method is suggested for their estimation and the expression for the cross-validation function is derived.

  • Název v anglickém jazyce

    Priestley-Chao Estimator of Conditional Density

  • Popis výsledku anglicky

    This contribution is focused on a non-parametric estimation of conditional density. Several types of kernel estimators of conditional density are known, the Nadaraya-Watson and the local linear estimators are the widest used ones. We focus on a new estimator - the Priestley-Chao estimator of conditional density. As conditional density can be regarded as a generalization of regression, the Priestley-Chao estimator, proposed initially for kernel regression, is extended for kernel estimation of conditional density. The conditional characteristics and the statistical properties of the suggested estimator are derived. The estimator depends on the smoothing parameters called bandwidths which influence the final quality of the estimate significantly. The cross-validation method is suggested for their estimation and the expression for the cross-validation function is derived.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mathematics, Information Technologies and Applied Sciences 2017, post-conference proceedings of extended versions of selected papers

  • ISBN

    9788075820266

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    151-163

  • Název nakladatele

    University of Defence, Brno, 2017

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    15. 6. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku