Study of “source sheath” problem in PIC/MC simulation: Spherical geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00096955" target="_blank" >RIV/00216224:14310/17:00096955 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.4984990" target="_blank" >http://dx.doi.org/10.1063/1.4984990</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4984990" target="_blank" >10.1063/1.4984990</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Study of “source sheath” problem in PIC/MC simulation: Spherical geometry
Popis výsledku v původním jazyce
A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.
Název v anglickém jazyce
Study of “source sheath” problem in PIC/MC simulation: Spherical geometry
Popis výsledku anglicky
A method for treatment of boundary conditions and particle loading in a self-consistent semi-infinite Particle-In-Cell/Monte Carlo simulation is presented. A non-ionizing, collisional plasma in contact with an electrode was assumed. The simulation was performed for a spherical probe with constant probe potential. The motion of charged particles was calculated in three dimensions, but only the radial charge distribution and thus only radial electric field were assumed. The particle loading has to be done with an appropriate velocity distribution with a radial drift velocity. This drift velocity has to be calculated from the probe current, and therefore, a self-consistent (iterative) approach is necessary. Furthermore, correct values of particle densities and electric field potential at the outer boundary of the computational domain have to be set using asymptotic formulae for particle density and electric field potential. This approach removes the “source sheath” which is created artificially, if incorrect boundary conditions and velocity distributions of loaded particles are used. This approach is, however, feasible only for the case of a negative probe where asymptotic formulae are known.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1411" target="_blank" >LO1411: Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics of Plasmas
ISSN
1070-664X
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000404639000083
EID výsledku v databázi Scopus
—