Ergodicity and parameter estimates in auditory neural circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100732" target="_blank" >RIV/00216224:14310/18:00100732 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/18:00315062 RIV/00216208:11110/18:10376709
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00422-017-0739-5" target="_blank" >http://dx.doi.org/10.1007/s00422-017-0739-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00422-017-0739-5" target="_blank" >10.1007/s00422-017-0739-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ergodicity and parameter estimates in auditory neural circuits
Popis výsledku v původním jazyce
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal to the average in less time and larger population. Objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps finding correspondence between variables and parameters. Methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: formula to calculate vector strength of neural spike timing in dependence of the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons, where spike trains have and have not the ergodic property are then discussed.
Název v anglickém jazyce
Ergodicity and parameter estimates in auditory neural circuits
Popis výsledku anglicky
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal to the average in less time and larger population. Objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps finding correspondence between variables and parameters. Methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: formula to calculate vector strength of neural spike timing in dependence of the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons, where spike trains have and have not the ergodic property are then discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biological Cybernetics
ISSN
0340-1200
e-ISSN
1432-0770
Svazek periodika
112
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
41-55
Kód UT WoS článku
000430460400005
EID výsledku v databázi Scopus
—