Application of Spike Sorting Algorithm to Neuronal Signals Originated from Boron Doped Diamond Micro-Electrode Arrays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F20%3A00531509" target="_blank" >RIV/67985823:_____/20:00531509 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00531509 RIV/68407700:21460/20:00342360
Výsledek na webu
<a href="http://www.biomed.cas.cz/physiolres/pdf/2020/69_529.pdf" target="_blank" >http://www.biomed.cas.cz/physiolres/pdf/2020/69_529.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33549/physiolres.934366" target="_blank" >10.33549/physiolres.934366</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Spike Sorting Algorithm to Neuronal Signals Originated from Boron Doped Diamond Micro-Electrode Arrays
Popis výsledku v původním jazyce
In this work we report on the implementation of methods for data processing signals from microelectrode arrays (MEA) and the application of these methods for signals originated from two types of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous research, we have shown that these methods have the capacity to detect neurons using commercially-available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have analysed the signals with the algorithms developed and employed them to inspect firing bursts and enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over the parameters, which estimated spike shape variability per each detected neuron. This result supports the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD materials with suitable mechanical, electrical and biocompatibility properties have a large potential in novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson's disease.
Název v anglickém jazyce
Application of Spike Sorting Algorithm to Neuronal Signals Originated from Boron Doped Diamond Micro-Electrode Arrays
Popis výsledku anglicky
In this work we report on the implementation of methods for data processing signals from microelectrode arrays (MEA) and the application of these methods for signals originated from two types of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous research, we have shown that these methods have the capacity to detect neurons using commercially-available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have analysed the signals with the algorithms developed and employed them to inspect firing bursts and enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over the parameters, which estimated spike shape variability per each detected neuron. This result supports the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD materials with suitable mechanical, electrical and biocompatibility properties have a large potential in novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson's disease.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-15319S" target="_blank" >GA17-15319S: Diamantová mikroelektrodová pole pro duální monitorování nervových signálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physiological Research
ISSN
0862-8408
e-ISSN
—
Svazek periodika
69
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
529-536
Kód UT WoS článku
000551270100018
EID výsledku v databázi Scopus
2-s2.0-85088495161