Independent-Component-Analysis-Based Spike Sorting Algorithm for High-Density Microelectrode Array Data Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158838" target="_blank" >RIV/68407700:21230/09:00158838 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Independent-Component-Analysis-Based Spike Sorting Algorithm for High-Density Microelectrode Array Data Processing
Popis výsledku v původním jazyce
Microelectrode arrays (MEAs) become an important tool for neurophysiology research. They are instrumental in revealing neural network formation processes and inter-cell communication schemes, which helps to understand the functioning of the human brain and to treat it's diseases. The electrode pitch of current CMOS-based MEAs can be as low as 18 ?m, which allows for recording the activity of single cells simultaneously on several channels [1]. Each electrode in turn records the activity of several adjacent neurons. The presented algorithm employs Independent Component Analysis (ICA) method to recover the spike signals and to assign them to a particular neuron. To overcome the fundamental ICA requirement of linearly mixed independent sources, which is not satisfied in the case of neuronal recordings, the algorithm runs in a loop, successively extracts traces with spiking activity, overlays those with previously detected ones and assigns signals to individual neurons.
Název v anglickém jazyce
Independent-Component-Analysis-Based Spike Sorting Algorithm for High-Density Microelectrode Array Data Processing
Popis výsledku anglicky
Microelectrode arrays (MEAs) become an important tool for neurophysiology research. They are instrumental in revealing neural network formation processes and inter-cell communication schemes, which helps to understand the functioning of the human brain and to treat it's diseases. The electrode pitch of current CMOS-based MEAs can be as low as 18 ?m, which allows for recording the activity of single cells simultaneously on several channels [1]. Each electrode in turn records the activity of several adjacent neurons. The presented algorithm employs Independent Component Analysis (ICA) method to recover the spike signals and to assign them to a particular neuron. To overcome the fundamental ICA requirement of linearly mixed independent sources, which is not satisfied in the case of neuronal recordings, the algorithm runs in a loop, successively extracts traces with spiking activity, overlays those with previously detected ones and assigns signals to individual neurons.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GD102%2F09%2FH082" target="_blank" >GD102/09/H082: Senzory a inteligentní senzorové systémy</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE SENSORS 2009 - The Eighth IEEE Conference on Sensors
ISBN
978-1-4244-5335-1
ISSN
1930-0395
e-ISSN
—
Počet stran výsledku
3
Strana od-do
—
Název nakladatele
IEEE Sensors Council
Místo vydání
Christchurch
Místo konání akce
Christchurch
Datum konání akce
25. 10. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—