Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F19%3A00504888" target="_blank" >RIV/67985823:_____/19:00504888 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/19:00504888 RIV/68407700:21460/19:00326474
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_52" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_52" target="_blank" >10.1007/978-981-10-9038-7_52</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study
Popis výsledku v původním jazyce
Microelectrode arrays (MEA) are extensively used for recording and stimulating neural activity in vitro and in vivo. Depositing nanostructured boron doped diamond (BDD) onto the neuroelectrodes makes it possible to obtain dual mode low-noise neuroelectrical and neurochemical information simultaneously. The signal processing procedure requires finding and distinguishing individual neurons spikes in the recordings. Spike identification is usually done manually which is inaccurate and inappropriate for complex datasets. In this paper, we present a methodology and two algorithms for neurons recognition and evaluation based on unsupervised learning. Forty-five extracellular randomly selected signals from 26 unique measurements of embryonic hippocampal rat neurons (20 kHz, 6 min) were recorded on the commercial 60 TiN channels MEA. The signals were filtered in the 300-3000 Hz band and an amplitude detector (4x std of the background noise) was used for spike detection. WaveClus features were computed and its 3 PCA components were extracted for every spike. The optimal number of clusters were evaluated by an expert rater. K-means + gap criterion (alg. 1) and the Gaussian Mixture Model + Bayesian Information Criterion (alg. 2) were implemented and compared. The total IntraClass Correlation showed a significant inter-rater agreement for all 3 rater procedures (ICC = 0.69, p < 0.001), when post hoc weighted Cohen's Kappas for 2 raters were 0.85 (expert vs. alg. 1, p < 0.001) and 0.62 (expert vs. alg. 2, p < 0.001). This will contribute to the objective definition of dual mode BDD MEA performance criteria and for a comparison with the current system.
Název v anglickém jazyce
Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study
Popis výsledku anglicky
Microelectrode arrays (MEA) are extensively used for recording and stimulating neural activity in vitro and in vivo. Depositing nanostructured boron doped diamond (BDD) onto the neuroelectrodes makes it possible to obtain dual mode low-noise neuroelectrical and neurochemical information simultaneously. The signal processing procedure requires finding and distinguishing individual neurons spikes in the recordings. Spike identification is usually done manually which is inaccurate and inappropriate for complex datasets. In this paper, we present a methodology and two algorithms for neurons recognition and evaluation based on unsupervised learning. Forty-five extracellular randomly selected signals from 26 unique measurements of embryonic hippocampal rat neurons (20 kHz, 6 min) were recorded on the commercial 60 TiN channels MEA. The signals were filtered in the 300-3000 Hz band and an amplitude detector (4x std of the background noise) was used for spike detection. WaveClus features were computed and its 3 PCA components were extracted for every spike. The optimal number of clusters were evaluated by an expert rater. K-means + gap criterion (alg. 1) and the Gaussian Mixture Model + Bayesian Information Criterion (alg. 2) were implemented and compared. The total IntraClass Correlation showed a significant inter-rater agreement for all 3 rater procedures (ICC = 0.69, p < 0.001), when post hoc weighted Cohen's Kappas for 2 raters were 0.85 (expert vs. alg. 1, p < 0.001) and 0.62 (expert vs. alg. 2, p < 0.001). This will contribute to the objective definition of dual mode BDD MEA performance criteria and for a comparison with the current system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-15319S" target="_blank" >GA17-15319S: Diamantová mikroelektrodová pole pro duální monitorování nervových signálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018
ISBN
978-981-10-9037-0
ISSN
1680-0737
e-ISSN
1433-9277
Počet stran výsledku
6
Strana od-do
281-286
Název nakladatele
Springer
Místo vydání
Singapore
Místo konání akce
Praha
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449742700052