Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F19%3A00504888" target="_blank" >RIV/67985823:_____/19:00504888 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/19:00504888 RIV/68407700:21460/19:00326474

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_52" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_52</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_52" target="_blank" >10.1007/978-981-10-9038-7_52</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study

  • Popis výsledku v původním jazyce

    Microelectrode arrays (MEA) are extensively used for recording and stimulating neural activity in vitro and in vivo. Depositing nanostructured boron doped diamond (BDD) onto the neuroelectrodes makes it possible to obtain dual mode low-noise neuroelectrical and neurochemical information simultaneously. The signal processing procedure requires finding and distinguishing individual neurons spikes in the recordings. Spike identification is usually done manually which is inaccurate and inappropriate for complex datasets. In this paper, we present a methodology and two algorithms for neurons recognition and evaluation based on unsupervised learning. Forty-five extracellular randomly selected signals from 26 unique measurements of embryonic hippocampal rat neurons (20 kHz, 6 min) were recorded on the commercial 60 TiN channels MEA. The signals were filtered in the 300-3000 Hz band and an amplitude detector (4x std of the background noise) was used for spike detection. WaveClus features were computed and its 3 PCA components were extracted for every spike. The optimal number of clusters were evaluated by an expert rater. K-means + gap criterion (alg. 1) and the Gaussian Mixture Model + Bayesian Information Criterion (alg. 2) were implemented and compared. The total IntraClass Correlation showed a significant inter-rater agreement for all 3 rater procedures (ICC = 0.69, p < 0.001), when post hoc weighted Cohen's Kappas for 2 raters were 0.85 (expert vs. alg. 1, p < 0.001) and 0.62 (expert vs. alg. 2, p < 0.001). This will contribute to the objective definition of dual mode BDD MEA performance criteria and for a comparison with the current system.

  • Název v anglickém jazyce

    Automated Neurons Recognition and Sorting for Diamond Based Microelectrode Arrays Recording: A Feasibility Study

  • Popis výsledku anglicky

    Microelectrode arrays (MEA) are extensively used for recording and stimulating neural activity in vitro and in vivo. Depositing nanostructured boron doped diamond (BDD) onto the neuroelectrodes makes it possible to obtain dual mode low-noise neuroelectrical and neurochemical information simultaneously. The signal processing procedure requires finding and distinguishing individual neurons spikes in the recordings. Spike identification is usually done manually which is inaccurate and inappropriate for complex datasets. In this paper, we present a methodology and two algorithms for neurons recognition and evaluation based on unsupervised learning. Forty-five extracellular randomly selected signals from 26 unique measurements of embryonic hippocampal rat neurons (20 kHz, 6 min) were recorded on the commercial 60 TiN channels MEA. The signals were filtered in the 300-3000 Hz band and an amplitude detector (4x std of the background noise) was used for spike detection. WaveClus features were computed and its 3 PCA components were extracted for every spike. The optimal number of clusters were evaluated by an expert rater. K-means + gap criterion (alg. 1) and the Gaussian Mixture Model + Bayesian Information Criterion (alg. 2) were implemented and compared. The total IntraClass Correlation showed a significant inter-rater agreement for all 3 rater procedures (ICC = 0.69, p < 0.001), when post hoc weighted Cohen's Kappas for 2 raters were 0.85 (expert vs. alg. 1, p < 0.001) and 0.62 (expert vs. alg. 2, p < 0.001). This will contribute to the objective definition of dual mode BDD MEA performance criteria and for a comparison with the current system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-15319S" target="_blank" >GA17-15319S: Diamantová mikroelektrodová pole pro duální monitorování nervových signálů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    World Congress on Medical Physics and Biomedical Engineering 2018

  • ISBN

    978-981-10-9037-0

  • ISSN

    1680-0737

  • e-ISSN

    1433-9277

  • Počet stran výsledku

    6

  • Strana od-do

    281-286

  • Název nakladatele

    Springer

  • Místo vydání

    Singapore

  • Místo konání akce

    Praha

  • Datum konání akce

    3. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000449742700052