Focal points and principal solutions of linear Hamiltonian systems revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00100766" target="_blank" >RIV/00216224:14310/18:00100766 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jde.2018.01.016" target="_blank" >http://dx.doi.org/10.1016/j.jde.2018.01.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2018.01.016" target="_blank" >10.1016/j.jde.2018.01.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Focal points and principal solutions of linear Hamiltonian systems revisited
Popis výsledku v původním jazyce
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
Název v anglickém jazyce
Focal points and principal solutions of linear Hamiltonian systems revisited
Popis výsledku anglicky
In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Svazek periodika
264
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
36
Strana od-do
5541-5576
Kód UT WoS článku
000426147300002
EID výsledku v databázi Scopus
2-s2.0-85040322598