Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089253" target="_blank" >RIV/00216224:14310/16:00089253 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jde.2016.01.004" target="_blank" >http://dx.doi.org/10.1016/j.jde.2016.01.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2016.01.004" target="_blank" >10.1016/j.jde.2016.01.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity
Popis výsledku v původním jazyce
In this paper we derive a general limit characterization of principal solutions at infinity of linear Hamiltonian systems under no controllability assumption. The main result is formulated in terms of a limit involving antiprincipal solutions at infinity of the system. The novelty lies in the fact that the principal and antiprincipal solutions at infinity may belong to two different genera of conjoined bases, i.e., the eventual image of their first components is not required to be the same as in the known literature. For this purpose we extend the theory of genera of conjoined bases, which was recently initiated by the authors. We show that the orthogonal projector representing each genus of conjoined bases satisfies a symmetric Riccati matrix differential equation. This result then leads to an exact description of the structure of the set of all genera, in particular it forms a complete lattice. We also provide several examples, which illustrate our new theory.
Název v anglickém jazyce
Genera of conjoined bases of linear Hamiltonian systems and limit characterization of principal solutions at infinity
Popis výsledku anglicky
In this paper we derive a general limit characterization of principal solutions at infinity of linear Hamiltonian systems under no controllability assumption. The main result is formulated in terms of a limit involving antiprincipal solutions at infinity of the system. The novelty lies in the fact that the principal and antiprincipal solutions at infinity may belong to two different genera of conjoined bases, i.e., the eventual image of their first components is not required to be the same as in the known literature. For this purpose we extend the theory of genera of conjoined bases, which was recently initiated by the authors. We show that the orthogonal projector representing each genus of conjoined bases satisfies a symmetric Riccati matrix differential equation. This result then leads to an exact description of the structure of the set of all genera, in particular it forms a complete lattice. We also provide several examples, which illustrate our new theory.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Svazek periodika
260
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
6581-6603
Kód UT WoS článku
000371450000006
EID výsledku v databázi Scopus
—