Extremal solutions at infinity for symplectic systems on time scales I – Genera of conjoined bases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00134003" target="_blank" >RIV/00216224:14310/22:00134003 - isvavai.cz</a>
Výsledek na webu
<a href="http://dea.ele-math.com/14-07/Extremal-solutions-at-infinity-for-symplectic-systems-on-time-scales-I-Genera-of-conjoined-bases" target="_blank" >http://dea.ele-math.com/14-07/Extremal-solutions-at-infinity-for-symplectic-systems-on-time-scales-I-Genera-of-conjoined-bases</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/dea-2022-14-07" target="_blank" >10.7153/dea-2022-14-07</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extremal solutions at infinity for symplectic systems on time scales I – Genera of conjoined bases
Popis výsledku v původním jazyce
In this paper we present a theory of genera of conjoined bases for symplectic dynamic systems on time scales and its connections with principal solutions at infinity and antiprincipal solutions at infinity for these systems. Among other properties we prove the existence of these extremal solutions in every genus. Our results generalize and complete the results by several authors on this subject, in particular by Došlý (2000), Šepitka and Šimon Hilscher (2016), and the author and Šimon Hilscher (2020). Some of our result are new even within the theory of genera of conjoined bases for linear Hamiltonian differential systems and symplectic difference systems, or they complete the arguments presented therein. Throughout the paper we do not assume any normality (controllability) condition on the system. This approach requires using the Moore–Penrose pseudoinverse matrices in the situations, where the inverse matrices occurred in the traditional literature. In this context we also prove a new explicit formula for the delta derivative of the Moore–Penrose pseudoinverse. This paper is a first part of the results connected with the theory of genera. The second part would naturally continue by providing a characterization of all principal solutions of (S) at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus and focusing on limit properties of above mentioned special solutions and by establishing their limit comparison at infinity.
Název v anglickém jazyce
Extremal solutions at infinity for symplectic systems on time scales I – Genera of conjoined bases
Popis výsledku anglicky
In this paper we present a theory of genera of conjoined bases for symplectic dynamic systems on time scales and its connections with principal solutions at infinity and antiprincipal solutions at infinity for these systems. Among other properties we prove the existence of these extremal solutions in every genus. Our results generalize and complete the results by several authors on this subject, in particular by Došlý (2000), Šepitka and Šimon Hilscher (2016), and the author and Šimon Hilscher (2020). Some of our result are new even within the theory of genera of conjoined bases for linear Hamiltonian differential systems and symplectic difference systems, or they complete the arguments presented therein. Throughout the paper we do not assume any normality (controllability) condition on the system. This approach requires using the Moore–Penrose pseudoinverse matrices in the situations, where the inverse matrices occurred in the traditional literature. In this context we also prove a new explicit formula for the delta derivative of the Moore–Penrose pseudoinverse. This paper is a first part of the results connected with the theory of genera. The second part would naturally continue by providing a characterization of all principal solutions of (S) at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus and focusing on limit properties of above mentioned special solutions and by establishing their limit comparison at infinity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Equations & Applications
ISSN
1847-120X
e-ISSN
1848-9605
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
38
Strana od-do
99-136
Kód UT WoS článku
000786361400001
EID výsledku v databázi Scopus
—