Extremal solutions at infinity for symplectic systems on time scales II - Existence theory and limit properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134236" target="_blank" >RIV/00216224:14310/23:00134236 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.7153/dea-2023-15-11" target="_blank" >http://dx.doi.org/10.7153/dea-2023-15-11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/dea-2023-15-11" target="_blank" >10.7153/dea-2023-15-11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extremal solutions at infinity for symplectic systems on time scales II - Existence theory and limit properties
Popis výsledku v původním jazyce
In this paper we continue with our investigation of principal and antiprincipal solutions at infinity solutions of a dynamic symplectic system. The paper is a continuation of part I appeared in Differential Equations and Applications in 2022, where we have presenteded a theory of genera of conjoined bases for symplectic dynamic systems on time scales and its connections with principal solutions at infinity and antiprincipal solutions at infinity for these systems together with some basic properties of this new concept on time scales. Here we provide a characterization of all principal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. Further, we provide a characterization of all antiprincipal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. We also establish mutual limit properties of principal and antiprincipal solutions at infinity.
Název v anglickém jazyce
Extremal solutions at infinity for symplectic systems on time scales II - Existence theory and limit properties
Popis výsledku anglicky
In this paper we continue with our investigation of principal and antiprincipal solutions at infinity solutions of a dynamic symplectic system. The paper is a continuation of part I appeared in Differential Equations and Applications in 2022, where we have presenteded a theory of genera of conjoined bases for symplectic dynamic systems on time scales and its connections with principal solutions at infinity and antiprincipal solutions at infinity for these systems together with some basic properties of this new concept on time scales. Here we provide a characterization of all principal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. Further, we provide a characterization of all antiprincipal solutions of dynamic symplectic system at infinity in the given genus in terms of the initial conditions and a fixed principal solution at infinity from this genus. We also establish mutual limit properties of principal and antiprincipal solutions at infinity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Differential Equations & Applications
ISSN
1847-120X
e-ISSN
1848-9605
Svazek periodika
15
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
HR - Chorvatská republika
Počet stran výsledku
35
Strana od-do
179-213
Kód UT WoS článku
001084505400001
EID výsledku v databázi Scopus
—