Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00104101" target="_blank" >RIV/00216224:14310/18:00104101 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >http://dx.doi.org/10.1002/cjs.11480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cjs.11480" target="_blank" >10.1002/cjs.11480</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study
Popis výsledku v původním jazyce
In the development of efficient predictive models, the key is to identify suitable predictors to establish a prediction model for a given linear or nonlinear model. This paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank-based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of dominance of LASSO over all the R-estimators (except the ridge R-estimator) is the sparsity-dimensional interval around the origin of the parameter space. We observe that the L_2-risk of the restricted R-estimator equals the lower bound on the L_2-risk of LASSO. Our conclusions are based on L_2-risk analysis and relative L_2-risk efficiencies with related tables and graphs.
Název v anglickém jazyce
Rank Theory Approach to Ridge, LASSO,Preliminary Test and Stein-type Estimators: A Comparative Study
Popis výsledku anglicky
In the development of efficient predictive models, the key is to identify suitable predictors to establish a prediction model for a given linear or nonlinear model. This paper provides a comparative study of ridge regression, LASSO, preliminary test and Stein-type estimators based on the theory of rank statistics. Under the orthonormal design matrix of a given linear model, we find that the rank-based ridge estimator outperforms the usual rank estimator, restricted R-estimator, rank-based LASSO, preliminary test and Stein-type R-estimators uniformly. On the other hand, neither LASSO nor the usual R-estimator, preliminary test and Stein-type R-estimators outperform the other. The region of dominance of LASSO over all the R-estimators (except the ridge R-estimator) is the sparsity-dimensional interval around the origin of the parameter space. We observe that the L_2-risk of the restricted R-estimator equals the lower bound on the L_2-risk of LASSO. Our conclusions are based on L_2-risk analysis and relative L_2-risk efficiencies with related tables and graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Canadian Journal of Statistics
ISSN
0319-5724
e-ISSN
1708-945X
Svazek periodika
46
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
15
Strana od-do
690-704
Kód UT WoS článku
000454597800009
EID výsledku v databázi Scopus
2-s2.0-85059551935