Stock market forecasting using LASSO linear regression model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86097016" target="_blank" >RIV/61989100:27240/15:86097016 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-13572-4_31" target="_blank" >http://dx.doi.org/10.1007/978-3-319-13572-4_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13572-4_31" target="_blank" >10.1007/978-3-319-13572-4_31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stock market forecasting using LASSO linear regression model
Popis výsledku v původním jazyce
Predicting stock exchange rates is receiving increasing attention and is a vital financial problem as it contributes to the development of effective strategies for stock exchange transactions. The forecasting of stock price movement in general is considered to be a thought-provoking and essential task for financial time series' exploration. In this paper, a Least Absolute Shrinkage and Selection Operator (LASSO) method based on a linear regression model is proposed as a novel method to predict financialmarket behavior. LASSO method is able to produce sparse solutions and performs very well when the numbers of features are less as compared to the number of observations. Experiments were performed with Goldman Sachs Group Inc. stock to determine the efficiency of the model. The results indicate that the proposed model outperforms the ridge linear regression model. (C) Springer International Publishing Switzerland 2015.
Název v anglickém jazyce
Stock market forecasting using LASSO linear regression model
Popis výsledku anglicky
Predicting stock exchange rates is receiving increasing attention and is a vital financial problem as it contributes to the development of effective strategies for stock exchange transactions. The forecasting of stock price movement in general is considered to be a thought-provoking and essential task for financial time series' exploration. In this paper, a Least Absolute Shrinkage and Selection Operator (LASSO) method based on a linear regression model is proposed as a novel method to predict financialmarket behavior. LASSO method is able to produce sparse solutions and performs very well when the numbers of features are less as compared to the number of observations. Experiments were performed with Goldman Sachs Group Inc. stock to determine the efficiency of the model. The results indicate that the proposed model outperforms the ridge linear regression model. (C) Springer International Publishing Switzerland 2015.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 334
ISBN
978-3-319-13571-7
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
371-381
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Addis Ababa
Datum konání akce
17. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—