Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F18%3A00106674" target="_blank" >RIV/00216224:14310/18:00106674 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1111/jvs.12604" target="_blank" >http://dx.doi.org/10.1111/jvs.12604</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/jvs.12604" target="_blank" >10.1111/jvs.12604</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications

  • Popis výsledku v původním jazyce

    Question: Is it possible to determine which combination of cluster number and taxon abundance transformation would produce the most effective classification of vegetation data? What is the effect of changing cluster number and taxon abundance weighting (applied simultaneously) on the stability and biological interpretation of vegetation classifications? Locality: Europe, Western Australia, simulated data. Methods: Real data sets representing Hungarian sub-montane grasslands, European wetlands, and Western Australian kwongan vegetation, as well as simulated data sets were used. The data sets were classified using the partitioning around medoids method. We generated classification solutions by gradually changing the transformation exponent applied to the species projected covers and the number of clusters. The effectiveness of each classification was assessed with a stability index. This index is based on bootstrap resampling of the original data set with subsequent elimination of duplicates. The vegetation types delimited by the most stable classification were compared with other classifications obtained at local maxima of the stability values. The effect of changing the transformation power exponent on the number of clusters, indexed according to their stability, was evaluated. Results: The optimal number of clusters varied with the power exponent in all cases, both with real and simulated data sets. With the real data sets, optimal cluster numbers obtained with different data transformations recovered interpretable biological patterns. Using the simulated data, the optima of stability values identified the simulated number of clusters correctly in most cases. Conclusions: With changing the settings of data transformation and the number of clusters, classifications of different stability can be produced. Highly stable classifications can be obtained from different settings for cluster number and data transformation. Despite similarly high stability, such classifications may reveal contrasting biological patterns, thus suggesting different interpretations. We suggest testing a wide range of available combinations to find the parameters resulting in the most effective classifications.

  • Název v anglickém jazyce

    Joint optimization of cluster number and abundance transformation for obtaining effective vegetation classifications

  • Popis výsledku anglicky

    Question: Is it possible to determine which combination of cluster number and taxon abundance transformation would produce the most effective classification of vegetation data? What is the effect of changing cluster number and taxon abundance weighting (applied simultaneously) on the stability and biological interpretation of vegetation classifications? Locality: Europe, Western Australia, simulated data. Methods: Real data sets representing Hungarian sub-montane grasslands, European wetlands, and Western Australian kwongan vegetation, as well as simulated data sets were used. The data sets were classified using the partitioning around medoids method. We generated classification solutions by gradually changing the transformation exponent applied to the species projected covers and the number of clusters. The effectiveness of each classification was assessed with a stability index. This index is based on bootstrap resampling of the original data set with subsequent elimination of duplicates. The vegetation types delimited by the most stable classification were compared with other classifications obtained at local maxima of the stability values. The effect of changing the transformation power exponent on the number of clusters, indexed according to their stability, was evaluated. Results: The optimal number of clusters varied with the power exponent in all cases, both with real and simulated data sets. With the real data sets, optimal cluster numbers obtained with different data transformations recovered interpretable biological patterns. Using the simulated data, the optima of stability values identified the simulated number of clusters correctly in most cases. Conclusions: With changing the settings of data transformation and the number of clusters, classifications of different stability can be produced. Highly stable classifications can be obtained from different settings for cluster number and data transformation. Despite similarly high stability, such classifications may reveal contrasting biological patterns, thus suggesting different interpretations. We suggest testing a wide range of available combinations to find the parameters resulting in the most effective classifications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Vegetation Science

  • ISSN

    1100-9233

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    336-347

  • Kód UT WoS článku

    000431503000021

  • EID výsledku v databázi Scopus

    2-s2.0-85042097350