Separation in Data Mining Based on Fractal Nature of Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00393276" target="_blank" >RIV/67985807:_____/13:00393276 - isvavai.cz</a>
Výsledek na webu
<a href="http://sdiwc.net/digital-library/separation-in-data-mining-based-on-fractal-nature-of-data.html" target="_blank" >http://sdiwc.net/digital-library/separation-in-data-mining-based-on-fractal-nature-of-data.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Separation in Data Mining Based on Fractal Nature of Data
Popis výsledku v původním jazyce
The separation of the searched data from the rest is an important task in data mining. Three separation/classification methods are presented. We use a singularity exponent in classifiers that are based on distances of patterns to a given (classified) pattern. The approximation of so called probability distribution mapping function of the distribution of points from the viewpoint of distances from a given point in the form of a scaling exponent power of a distance is presented together with a way how tostate it. Considering data as points in a metric space, three methods are based on transformed distances of neighbors of a given point in a multidimensional space via functions that use different estimates of scaling exponent. Classifiers ? data separators utilizing knowledge about explored data distribution in a space and suggested expressions of the scaling exponent are presented. Experimental results on both synthetic and real-life data show interesting behavior (classification accura
Název v anglickém jazyce
Separation in Data Mining Based on Fractal Nature of Data
Popis výsledku anglicky
The separation of the searched data from the rest is an important task in data mining. Three separation/classification methods are presented. We use a singularity exponent in classifiers that are based on distances of patterns to a given (classified) pattern. The approximation of so called probability distribution mapping function of the distribution of points from the viewpoint of distances from a given point in the form of a scaling exponent power of a distance is presented together with a way how tostate it. Considering data as points in a metric space, three methods are based on transformed distances of neighbors of a given point in a multidimensional space via functions that use different estimates of scaling exponent. Classifiers ? data separators utilizing knowledge about explored data distribution in a space and suggested expressions of the scaling exponent are presented. Experimental results on both synthetic and real-life data show interesting behavior (classification accura
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Digital Information and Wireless Communications
ISSN
2225-658X
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HK - Hongkong
Počet stran výsledku
17
Strana od-do
44-60
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—