Riccati equations for linear Hamiltonian systems without controllability condition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00107305" target="_blank" >RIV/00216224:14310/19:00107305 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimsciences.org/article/doi/10.3934/dcds.2019074" target="_blank" >https://www.aimsciences.org/article/doi/10.3934/dcds.2019074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2019074" target="_blank" >10.3934/dcds.2019074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Riccati equations for linear Hamiltonian systems without controllability condition
Popis výsledku v původním jazyce
In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.
Název v anglickém jazyce
Riccati equations for linear Hamiltonian systems without controllability condition
Popis výsledku anglicky
In this paper we develop new theory of Riccati matrix differential equations for linear Hamiltonian systems, which do not require any controllability assumption. When the system is nonoscillatory, it is known from our previous work that conjoined bases of the system with eventually the same image form a special structure called a genus. We show that for every such a genus there is an associated Riccati equation. We study the properties of symmetric solutions of these Riccati equations and their connection with conjoined bases of the system. For a given genus, we pay a special attention to distinguished solutions at infinity of the associated Riccati equation and their relationship with the principal solutions at infinity of the system in the considered genus. We show the uniqueness of the distinguished solution at infinity of the Riccati equation corresponding to the minimal genus. This study essentially extends and completes the work of W. T. Reid (1964, 1972), W. A. Coppel (1971), P. Hartman (1964), W. Kratz (1995), and other authors who considered the Riccati equation and its distinguished solution at infinity for invertible conjoined bases, i.e., for the maximal genus in our setting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonovské a symplektické systémy: oscilační a spektrální teorie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete & Continuous Dynamical Systems - A
ISSN
1078-0947
e-ISSN
1553-5231
Svazek periodika
39
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
46
Strana od-do
1685-1730
Kód UT WoS článku
000455398400003
EID výsledku v databázi Scopus
2-s2.0-85061344871