Bifurcation manifolds in predator–prey models computed by Gröbner basis method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00109406" target="_blank" >RIV/00216224:14310/19:00109406 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.mbs.2019.03.008" target="_blank" >https://doi.org/10.1016/j.mbs.2019.03.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mbs.2019.03.008" target="_blank" >10.1016/j.mbs.2019.03.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bifurcation manifolds in predator–prey models computed by Gröbner basis method
Popis výsledku v původním jazyce
Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research – for the fold, transcritical, cusp, Hopf and Bogdanov–Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig–MacArthur predator–prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
Název v anglickém jazyce
Bifurcation manifolds in predator–prey models computed by Gröbner basis method
Popis výsledku anglicky
Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research – for the fold, transcritical, cusp, Hopf and Bogdanov–Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig–MacArthur predator–prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Biosciences
ISSN
0025-5564
e-ISSN
1879-3134
Svazek periodika
312
Číslo periodika v rámci svazku
JUN 2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
000469895200001
EID výsledku v databázi Scopus
2-s2.0-85063868259