Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00109780" target="_blank" >RIV/00216224:14310/19:00109780 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020746218304220" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020746218304220</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2019.03.009" target="_blank" >10.1016/j.ijnonlinmec.2019.03.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting
Popis výsledku v původním jazyce
Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.
Název v anglickém jazyce
Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting
Popis výsledku anglicky
Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
1878-5638
Svazek periodika
114
Číslo periodika v rámci svazku
AUG 2019
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
21-26
Kód UT WoS článku
000469904900003
EID výsledku v databázi Scopus
2-s2.0-85064715563