Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00109780" target="_blank" >RIV/00216224:14310/19:00109780 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020746218304220" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020746218304220</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2019.03.009" target="_blank" >10.1016/j.ijnonlinmec.2019.03.009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting

  • Popis výsledku v původním jazyce

    Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.

  • Název v anglickém jazyce

    Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting

  • Popis výsledku anglicky

    Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Non-Linear Mechanics

  • ISSN

    0020-7462

  • e-ISSN

    1878-5638

  • Svazek periodika

    114

  • Číslo periodika v rámci svazku

    AUG 2019

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    6

  • Strana od-do

    21-26

  • Kód UT WoS článku

    000469904900003

  • EID výsledku v databázi Scopus

    2-s2.0-85064715563