Evaluation of the Dawson function and its antiderivative needed for the Gaussian broadening of piecewise polynomial functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00112014" target="_blank" >RIV/00216224:14310/19:00112014 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1116/1.5122276" target="_blank" >https://doi.org/10.1116/1.5122276</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1116/1.5122276" target="_blank" >10.1116/1.5122276</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of the Dawson function and its antiderivative needed for the Gaussian broadening of piecewise polynomial functions
Popis výsledku v původním jazyce
The broadening of a sharp (unbroadened) dielectric function is a fruitful approach to the construction of models of dielectric response of materials. It naturally includes structural disorder or finite state lifetime and allows parameterization of such effects. The unbroadened function is often taken as a piecewise polynomial. Broadening it with the Lorentzian then leads to relatively simple analytical formulae. The Gaussian broadening, however, requires evaluation of several special functions, including the antiderivative of the Dawson function which is not generally available in mathematical libraries. Recently, the authors described the simple recurrent formulae for the construction of a Gaussian-broadened piecewise polynomial model of a complex dielectric function using three special functions, the error function, the Dawson function, and its antiderivative. In this paper, for the Dawson function and its antiderivative an efficient evaluation method is developed enabling the utilization of this model in optical spectra fitting. The effectiveness of this approach is illustrated using elementary and real-world examples of complex dielectric function models.
Název v anglickém jazyce
Evaluation of the Dawson function and its antiderivative needed for the Gaussian broadening of piecewise polynomial functions
Popis výsledku anglicky
The broadening of a sharp (unbroadened) dielectric function is a fruitful approach to the construction of models of dielectric response of materials. It naturally includes structural disorder or finite state lifetime and allows parameterization of such effects. The unbroadened function is often taken as a piecewise polynomial. Broadening it with the Lorentzian then leads to relatively simple analytical formulae. The Gaussian broadening, however, requires evaluation of several special functions, including the antiderivative of the Dawson function which is not generally available in mathematical libraries. Recently, the authors described the simple recurrent formulae for the construction of a Gaussian-broadened piecewise polynomial model of a complex dielectric function using three special functions, the error function, the Dawson function, and its antiderivative. In this paper, for the Dawson function and its antiderivative an efficient evaluation method is developed enabling the utilization of this model in optical spectra fitting. The effectiveness of this approach is illustrated using elementary and real-world examples of complex dielectric function models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Vacuum Science & Technology B
ISSN
2166-2746
e-ISSN
2166-2754
Svazek periodika
37
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
„062909-1“-„062909-7“
Kód UT WoS článku
000522021700060
EID výsledku v databázi Scopus
2-s2.0-85073624942