Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Monads and theories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113518" target="_blank" >RIV/00216224:14310/19:00113518 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0001870819302580" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0001870819302580</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2019.05.016" target="_blank" >10.1016/j.aim.2019.05.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Monads and theories

  • Popis výsledku v původním jazyce

    Given a locally presentable enriched category epsilon together with a small dense full subcategory A of arities, we study the relationship between monads on and identity-on-objects functors out of A, which we call A-pretheories. We show that the natural constructions relating these two kinds of structure form an adjoint pair. The fixpoints of the adjunction are characterised on the one side as the A-nervous monads-those for which the conclusions of Weber's nerve theorem hold-and on the other, as the A-theories which we introduce here. The resulting equivalence between A-nervous monads and A-theories is best possible in a precise sense, and extends almost all previously known monad-theory correspondences. It also establishes some completely new correspondences, including one which captures the globular theories defining Grothendieck weak omega-groupoids. Besides establishing our general correspondence and illustrating its reach, we study good properties of A-nervous monads and A-theories that allow us to recognise and construct them with ease. We also compare them with the monads with arities and theories with arities introduced and studied by Berger, Mellies and Weber.

  • Název v anglickém jazyce

    Monads and theories

  • Popis výsledku anglicky

    Given a locally presentable enriched category epsilon together with a small dense full subcategory A of arities, we study the relationship between monads on and identity-on-objects functors out of A, which we call A-pretheories. We show that the natural constructions relating these two kinds of structure form an adjoint pair. The fixpoints of the adjunction are characterised on the one side as the A-nervous monads-those for which the conclusions of Weber's nerve theorem hold-and on the other, as the A-theories which we introduce here. The resulting equivalence between A-nervous monads and A-theories is best possible in a precise sense, and extends almost all previously known monad-theory correspondences. It also establishes some completely new correspondences, including one which captures the globular theories defining Grothendieck weak omega-groupoids. Besides establishing our general correspondence and illustrating its reach, we study good properties of A-nervous monads and A-theories that allow us to recognise and construct them with ease. We also compare them with the monads with arities and theories with arities introduced and studied by Berger, Mellies and Weber.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Svazek periodika

    351

  • Číslo periodika v rámci svazku

    JUL 31 2019

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    48

  • Strana od-do

    1024-1071

  • Kód UT WoS článku

    000475548900028

  • EID výsledku v databázi Scopus

    2-s2.0-85066289226