Monads and theories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113518" target="_blank" >RIV/00216224:14310/19:00113518 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0001870819302580" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0001870819302580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2019.05.016" target="_blank" >10.1016/j.aim.2019.05.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monads and theories
Popis výsledku v původním jazyce
Given a locally presentable enriched category epsilon together with a small dense full subcategory A of arities, we study the relationship between monads on and identity-on-objects functors out of A, which we call A-pretheories. We show that the natural constructions relating these two kinds of structure form an adjoint pair. The fixpoints of the adjunction are characterised on the one side as the A-nervous monads-those for which the conclusions of Weber's nerve theorem hold-and on the other, as the A-theories which we introduce here. The resulting equivalence between A-nervous monads and A-theories is best possible in a precise sense, and extends almost all previously known monad-theory correspondences. It also establishes some completely new correspondences, including one which captures the globular theories defining Grothendieck weak omega-groupoids. Besides establishing our general correspondence and illustrating its reach, we study good properties of A-nervous monads and A-theories that allow us to recognise and construct them with ease. We also compare them with the monads with arities and theories with arities introduced and studied by Berger, Mellies and Weber.
Název v anglickém jazyce
Monads and theories
Popis výsledku anglicky
Given a locally presentable enriched category epsilon together with a small dense full subcategory A of arities, we study the relationship between monads on and identity-on-objects functors out of A, which we call A-pretheories. We show that the natural constructions relating these two kinds of structure form an adjoint pair. The fixpoints of the adjunction are characterised on the one side as the A-nervous monads-those for which the conclusions of Weber's nerve theorem hold-and on the other, as the A-theories which we introduce here. The resulting equivalence between A-nervous monads and A-theories is best possible in a precise sense, and extends almost all previously known monad-theory correspondences. It also establishes some completely new correspondences, including one which captures the globular theories defining Grothendieck weak omega-groupoids. Besides establishing our general correspondence and illustrating its reach, we study good properties of A-nervous monads and A-theories that allow us to recognise and construct them with ease. We also compare them with the monads with arities and theories with arities introduced and studied by Berger, Mellies and Weber.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Svazek periodika
351
Číslo periodika v rámci svazku
JUL 31 2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
48
Strana od-do
1024-1071
Kód UT WoS článku
000475548900028
EID výsledku v databázi Scopus
2-s2.0-85066289226