Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113530" target="_blank" >RIV/00216224:14310/19:00113530 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00526-019-1523-2" target="_blank" >https://doi.org/10.1007/s00526-019-1523-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00526-019-1523-2" target="_blank" >10.1007/s00526-019-1523-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties

  • Popis výsledku v původním jazyce

    The notions of generalized principal eigenvalue for linear second order elliptic operators in general domains introduced by Berestycki et al. (Commun Pure Appl Math 47:47-92, 1994) and Berestycki and Rossi (J Eur Math Soc (JEMS) 8:195-215, 2006, Commun Pure Appl Math 68:1014-1065, 2015) have become a very useful and important tool in analysis of partial differential equations. This motivates us for our study of various concepts of eigenvalue for quasilinear operator of the form KV[u]:=-Delta(p)u+V-u(p-1), u &gt;= 0. This operator is a natural generalization of self-adjoint linear operators. If is a smooth bounded domain, we already proved in Nguyen and Vo (J Funct Anal 269:3120-3146, 2015) that the generalized principal eigenvalue coincides with the (classical) first eigenvalue of KV. Here we investigate the relation between three types of the generalized principal eigenvalue for KV on general smooth domain (possibly unbounded), which plays an important role in the investigation of their limits with respect to the parameters. We also derive a nice simple condition for the simplicity of the generalized principal eigenvalue and the spectrum of KV in RN. To these aims, we employ new ideas to overcome fundamental difficulties originated from the nonlinearity of p-Laplacian. We also discuss applications of the notions by examining some examples.

  • Název v anglickém jazyce

    On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties

  • Popis výsledku anglicky

    The notions of generalized principal eigenvalue for linear second order elliptic operators in general domains introduced by Berestycki et al. (Commun Pure Appl Math 47:47-92, 1994) and Berestycki and Rossi (J Eur Math Soc (JEMS) 8:195-215, 2006, Commun Pure Appl Math 68:1014-1065, 2015) have become a very useful and important tool in analysis of partial differential equations. This motivates us for our study of various concepts of eigenvalue for quasilinear operator of the form KV[u]:=-Delta(p)u+V-u(p-1), u &gt;= 0. This operator is a natural generalization of self-adjoint linear operators. If is a smooth bounded domain, we already proved in Nguyen and Vo (J Funct Anal 269:3120-3146, 2015) that the generalized principal eigenvalue coincides with the (classical) first eigenvalue of KV. Here we investigate the relation between three types of the generalized principal eigenvalue for KV on general smooth domain (possibly unbounded), which plays an important role in the investigation of their limits with respect to the parameters. We also derive a nice simple condition for the simplicity of the generalized principal eigenvalue and the spectrum of KV in RN. To these aims, we employ new ideas to overcome fundamental difficulties originated from the nonlinearity of p-Laplacian. We also discuss applications of the notions by examining some examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

  • ISSN

    0944-2669

  • e-ISSN

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

    000468929600003

  • EID výsledku v databázi Scopus

    2-s2.0-85068619071