On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00113530" target="_blank" >RIV/00216224:14310/19:00113530 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00526-019-1523-2" target="_blank" >https://doi.org/10.1007/s00526-019-1523-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-019-1523-2" target="_blank" >10.1007/s00526-019-1523-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties
Popis výsledku v původním jazyce
The notions of generalized principal eigenvalue for linear second order elliptic operators in general domains introduced by Berestycki et al. (Commun Pure Appl Math 47:47-92, 1994) and Berestycki and Rossi (J Eur Math Soc (JEMS) 8:195-215, 2006, Commun Pure Appl Math 68:1014-1065, 2015) have become a very useful and important tool in analysis of partial differential equations. This motivates us for our study of various concepts of eigenvalue for quasilinear operator of the form KV[u]:=-Delta(p)u+V-u(p-1), u >= 0. This operator is a natural generalization of self-adjoint linear operators. If is a smooth bounded domain, we already proved in Nguyen and Vo (J Funct Anal 269:3120-3146, 2015) that the generalized principal eigenvalue coincides with the (classical) first eigenvalue of KV. Here we investigate the relation between three types of the generalized principal eigenvalue for KV on general smooth domain (possibly unbounded), which plays an important role in the investigation of their limits with respect to the parameters. We also derive a nice simple condition for the simplicity of the generalized principal eigenvalue and the spectrum of KV in RN. To these aims, we employ new ideas to overcome fundamental difficulties originated from the nonlinearity of p-Laplacian. We also discuss applications of the notions by examining some examples.
Název v anglickém jazyce
On the generalized principal eigenvalue of quasilinear operator: definitions and qualitative properties
Popis výsledku anglicky
The notions of generalized principal eigenvalue for linear second order elliptic operators in general domains introduced by Berestycki et al. (Commun Pure Appl Math 47:47-92, 1994) and Berestycki and Rossi (J Eur Math Soc (JEMS) 8:195-215, 2006, Commun Pure Appl Math 68:1014-1065, 2015) have become a very useful and important tool in analysis of partial differential equations. This motivates us for our study of various concepts of eigenvalue for quasilinear operator of the form KV[u]:=-Delta(p)u+V-u(p-1), u >= 0. This operator is a natural generalization of self-adjoint linear operators. If is a smooth bounded domain, we already proved in Nguyen and Vo (J Funct Anal 269:3120-3146, 2015) that the generalized principal eigenvalue coincides with the (classical) first eigenvalue of KV. Here we investigate the relation between three types of the generalized principal eigenvalue for KV on general smooth domain (possibly unbounded), which plays an important role in the investigation of their limits with respect to the parameters. We also derive a nice simple condition for the simplicity of the generalized principal eigenvalue and the spectrum of KV in RN. To these aims, we employ new ideas to overcome fundamental difficulties originated from the nonlinearity of p-Laplacian. We also discuss applications of the notions by examining some examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN
0944-2669
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000468929600003
EID výsledku v databázi Scopus
2-s2.0-85068619071