Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fourier Analysis with Generalized Integration

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114709" target="_blank" >RIV/00216224:14310/20:00114709 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/math8071199" target="_blank" >https://doi.org/10.3390/math8071199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8071199" target="_blank" >10.3390/math8071199</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fourier Analysis with Generalized Integration

  • Popis výsledku v původním jazyce

    We generalize the classic Fourier transform operator F-p by using the Henstock-Kurzweil integral theory. It is shown that the operator equals the HK-Fourier transform on a dense subspace of L-p, 1 &lt; p &lt;= 2. In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F-p(f) under more general conditions than in Lebesgue's theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue's theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.

  • Název v anglickém jazyce

    Fourier Analysis with Generalized Integration

  • Popis výsledku anglicky

    We generalize the classic Fourier transform operator F-p by using the Henstock-Kurzweil integral theory. It is shown that the operator equals the HK-Fourier transform on a dense subspace of L-p, 1 &lt; p &lt;= 2. In particular, a theoretical scope of this representation is raised to approximate the Fourier transform of functions on the mentioned subspace numerically. Besides, we show the differentiability of the Fourier transform function F-p(f) under more general conditions than in Lebesgue's theory. Additionally, continuity of the Fourier Sine transform operator into the space of Henstock-Kurzweil integrable functions is proved, which is similar in spirit to the already known result for the Fourier Cosine transform operator. Because our results establish a representation of the Fourier transform with more properties than in Lebesgue's theory, these results might contribute to development of better algorithms of numerical integration, which are very important in applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-11846S" target="_blank" >GA20-11846S: Diferenciální a diferenční rovnice reálných řádů: kvalitativní analýza a její aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    000558736900001

  • EID výsledku v databázi Scopus

    2-s2.0-85088646144