Residuated Operators and Dedekind–MacNeille Completion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118809" target="_blank" >RIV/00216224:14310/21:00118809 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73609450
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-52163-9_5" target="_blank" >https://doi.org/10.1007/978-3-030-52163-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-52163-9_5" target="_blank" >10.1007/978-3-030-52163-9_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Residuated Operators and Dedekind–MacNeille Completion
Popis výsledku v původním jazyce
The concept of operator residuation for bounded posets with unary operation was introduced by the first two authors. It turns out that in some cases when these operators are transformed into lattice terms and the poset P is completed to its Dedekind–MacNeille completion DM(P) then the complete lattice DM(P) becomes a residuated lattice with respect to these transformed terms. It is shown that this holds in particular for Boolean posets and for relatively pseudocomplemented posets. A more complicated situation is with orthomodular and pseudo-orthomodular posets. We show which operators M (multiplication) and R (residuation) yield operator left-residuation in a pseudo-orthomodular poset P and if DM(P) is an orthomodular lattice then the transformed lattice terms circled dot and -> form a left residuation in DM(P). However, it is a problem to determine when DM(P) is an orthomodular lattice. We get some classes of pseudo-orthomodular posets for which their Dedekind–MacNeille completion is an orthomodular lattice and we introduce the so-called strongly D-continuous pseudo-orthomodular posets. Finally we prove that, for a pseudo-orthomodular poset P, the Dedekind–MacNeille completion DM(P) is an orthomodular lattice if and only if P is strongly D-continuous.
Název v anglickém jazyce
Residuated Operators and Dedekind–MacNeille Completion
Popis výsledku anglicky
The concept of operator residuation for bounded posets with unary operation was introduced by the first two authors. It turns out that in some cases when these operators are transformed into lattice terms and the poset P is completed to its Dedekind–MacNeille completion DM(P) then the complete lattice DM(P) becomes a residuated lattice with respect to these transformed terms. It is shown that this holds in particular for Boolean posets and for relatively pseudocomplemented posets. A more complicated situation is with orthomodular and pseudo-orthomodular posets. We show which operators M (multiplication) and R (residuation) yield operator left-residuation in a pseudo-orthomodular poset P and if DM(P) is an orthomodular lattice then the transformed lattice terms circled dot and -> form a left residuation in DM(P). However, it is a problem to determine when DM(P) is an orthomodular lattice. We get some classes of pseudo-orthomodular posets for which their Dedekind–MacNeille completion is an orthomodular lattice and we introduce the so-called strongly D-continuous pseudo-orthomodular posets. Finally we prove that, for a pseudo-orthomodular poset P, the Dedekind–MacNeille completion DM(P) is an orthomodular lattice if and only if P is strongly D-continuous.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Algebraic Perspectives on Substructural Logics
ISBN
9783030521622
Počet stran výsledku
16
Strana od-do
57-72
Počet stran knihy
193
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—