Sectionally Pseudocomplemented Posets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118951" target="_blank" >RIV/00216224:14310/21:00118951 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73609451
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11083-021-09555-6" target="_blank" >https://link.springer.com/article/10.1007/s11083-021-09555-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-021-09555-6" target="_blank" >10.1007/s11083-021-09555-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sectionally Pseudocomplemented Posets
Popis výsledku v původním jazyce
The concept of a sectionally pseudocomplemented lattice was introduced in Birkhoff (1979) as an extension of relative pseudocomplementation for not necessarily distributive lattices. The typical example of such a lattice is the non-modular lattice N-5. The aim of this paper is to extend the concept of sectional pseudocomplementation from lattices to posets. At first we show that the class of sectionally pseudocomplemented lattices forms a variety of lattices which can be described by two simple identities. This variety has nice congruence properties. We summarize properties of sectionally pseudocomplemented posets and show differences to relative pseudocomplementation. We prove that every sectionally pseudocomplemented poset is completely L-semidistributive. We introduce the concept of congruence on these posets and show when the quotient structure becomes a poset again. Finally, we study the Dedekind-MacNeille completion of sectionally pseudocomplemented posets. We show that contrary to the case of relatively pseudocomplemented posets, this completion need not be sectionally pseudocomplemented but we present the construction of a so-called generalized ordinal sum which enables us to construct the Dedekind-MacNeille completion provided the completions of the summands are known.
Název v anglickém jazyce
Sectionally Pseudocomplemented Posets
Popis výsledku anglicky
The concept of a sectionally pseudocomplemented lattice was introduced in Birkhoff (1979) as an extension of relative pseudocomplementation for not necessarily distributive lattices. The typical example of such a lattice is the non-modular lattice N-5. The aim of this paper is to extend the concept of sectional pseudocomplementation from lattices to posets. At first we show that the class of sectionally pseudocomplemented lattices forms a variety of lattices which can be described by two simple identities. This variety has nice congruence properties. We summarize properties of sectionally pseudocomplemented posets and show differences to relative pseudocomplementation. We prove that every sectionally pseudocomplemented poset is completely L-semidistributive. We introduce the concept of congruence on these posets and show when the quotient structure becomes a poset again. Finally, we study the Dedekind-MacNeille completion of sectionally pseudocomplemented posets. We show that contrary to the case of relatively pseudocomplemented posets, this completion need not be sectionally pseudocomplemented but we present the construction of a so-called generalized ordinal sum which enables us to construct the Dedekind-MacNeille completion provided the completions of the summands are known.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Order
ISSN
0167-8094
e-ISSN
1572-9273
Svazek periodika
38
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
527-546
Kód UT WoS článku
000627203600002
EID výsledku v databázi Scopus
2-s2.0-85102456470