Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119376" target="_blank" >RIV/00216224:14310/22:00119376 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00526-021-02102-6" target="_blank" >https://link.springer.com/article/10.1007/s00526-021-02102-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-021-02102-6" target="_blank" >10.1007/s00526-021-02102-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations
Popis výsledku v původním jazyce
Let (Omega subset {mathbb {R}}^N) ((N ge 3)) be a (C^2) bounded domain and (Sigma subset Omega ) be a compact, (C^2) submanifold in ({mathbb {R}}^N) without boundary, of dimension k with (0le k < N-2). Denote (d_Sigma (x): = mathrm {dist},(x,Sigma )) and (L_mu : = Delta + mu d_Sigma ^{-2}) in (Omega {setminus } Sigma ), (mu in {mathbb {R}}). The optimal Hardy constant (H:=(N-k-2)/2) is deeply involved in the study of the Schrödinger operator (L_mu ). The Green kernel and Martin kernel of (-L_mu ) play an important role in the study of boundary value problems for nonhomogeneous linear equations involving (-L_mu ). If (mu le H^2) and the first eigenvalue of (-L_mu ) is positive then the existence of the Green kernel of (-L_mu ) is guaranteed by the existence of the associated heat kernel. In this paper, we construct the Martin kernel of (-L_mu ) and prove the Representation theory which ensures that any positive solution of the linear equation (-L_mu u = 0) in (Omega {setminus } Sigma ) can be uniquely represented via this kernel. We also establish sharp, two-sided estimates for Green kernel and Martin kernel of (-L_mu ). We combine these results to derive the existence, uniqueness and a priori estimates of the solution to boundary value problems with measures for nonhomogeneous linear equations associated to (-L_mu ).
Název v anglickém jazyce
Martin kernel of Schrödinger operators with singular potentials and applications to B.V.P. for linear elliptic equations
Popis výsledku anglicky
Let (Omega subset {mathbb {R}}^N) ((N ge 3)) be a (C^2) bounded domain and (Sigma subset Omega ) be a compact, (C^2) submanifold in ({mathbb {R}}^N) without boundary, of dimension k with (0le k < N-2). Denote (d_Sigma (x): = mathrm {dist},(x,Sigma )) and (L_mu : = Delta + mu d_Sigma ^{-2}) in (Omega {setminus } Sigma ), (mu in {mathbb {R}}). The optimal Hardy constant (H:=(N-k-2)/2) is deeply involved in the study of the Schrödinger operator (L_mu ). The Green kernel and Martin kernel of (-L_mu ) play an important role in the study of boundary value problems for nonhomogeneous linear equations involving (-L_mu ). If (mu le H^2) and the first eigenvalue of (-L_mu ) is positive then the existence of the Green kernel of (-L_mu ) is guaranteed by the existence of the associated heat kernel. In this paper, we construct the Martin kernel of (-L_mu ) and prove the Representation theory which ensures that any positive solution of the linear equation (-L_mu u = 0) in (Omega {setminus } Sigma ) can be uniquely represented via this kernel. We also establish sharp, two-sided estimates for Green kernel and Martin kernel of (-L_mu ). We combine these results to derive the existence, uniqueness and a priori estimates of the solution to boundary value problems with measures for nonhomogeneous linear equations associated to (-L_mu ).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
1432-0835
Svazek periodika
61
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
36
Strana od-do
1-36
Kód UT WoS článku
000717551300005
EID výsledku v databázi Scopus
2-s2.0-85119156947