Landslide susceptibility mapping along the Thimphu-Phuentsholing highway using machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00125019" target="_blank" >RIV/00216224:14310/22:00125019 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/B9780323898614000385" target="_blank" >https://www.sciencedirect.com/science/article/pii/B9780323898614000385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-323-89861-4.00038-5" target="_blank" >10.1016/B978-0-323-89861-4.00038-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Landslide susceptibility mapping along the Thimphu-Phuentsholing highway using machine learning
Popis výsledku v původním jazyce
In the Himalayan region, landslides are considered one of the most common natural disasters. The study area for this study is a 2 km buffer along the Thimphu-Phuentsholing highway in Bhutan, which is a part of Asian Highway 48. In this study, machine learning was adopted which allows relatively precise predictions to be made by providing accurate and reliable data. Of the numerous methods available for machine learning, two methods, i.e., random forest (RF) and logistic regression (LR) have been selected for this paper. Slope, aspect, geology, land cover, precipitation, distance from the drainage, distance from the road, TPI, TRI, Elevation, and surface roughness were the parameters selected for the study area. The two methods are validated and compared using the ROC and (AUC). The RF method performed slightly better than the LR method with an AUC of 0.91 and LR of 0.86.
Název v anglickém jazyce
Landslide susceptibility mapping along the Thimphu-Phuentsholing highway using machine learning
Popis výsledku anglicky
In the Himalayan region, landslides are considered one of the most common natural disasters. The study area for this study is a 2 km buffer along the Thimphu-Phuentsholing highway in Bhutan, which is a part of Asian Highway 48. In this study, machine learning was adopted which allows relatively precise predictions to be made by providing accurate and reliable data. Of the numerous methods available for machine learning, two methods, i.e., random forest (RF) and logistic regression (LR) have been selected for this paper. Slope, aspect, geology, land cover, precipitation, distance from the drainage, distance from the road, TPI, TRI, Elevation, and surface roughness were the parameters selected for the study area. The two methods are validated and compared using the ROC and (AUC). The RF method performed slightly better than the LR method with an AUC of 0.91 and LR of 0.86.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management
ISBN
9780323898614
Počet stran výsledku
17
Strana od-do
601-617
Počet stran knihy
683
Název nakladatele
Elsevier
Místo vydání
Cambridge
Kód UT WoS kapitoly
—