Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00126393" target="_blank" >RIV/00216224:14310/22:00126393 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac4ddf/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac4ddf/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6595/ac4ddf" target="_blank" >10.1088/1361-6595/ac4ddf</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water
Popis výsledku v původním jazyce
Recently, a bouncing-like mechanism for electron multiplication inside long nano-ruptures during the early stages of nanosecond discharge in liquid water has been proposed in (Bonaventura 2021 Plasma Sources Sci. Technol. 30 065023). This mechanism leads to the formation of electron avalanches within nano-ruptures caused by strong electrostrictive forces. The avalanche propagation is a self-sustaining process: the electrons emitted from the water surface to the cavity support the propagation of the avalanche and the avalanche itself is a source of the parent electrons impinging on the surface of the nano-rupture and causing secondary emission. We analyze the process of the electron secondary emission directly from the simulation results of the electron avalanche propagation. This allow us to perform an in situ study of the secondary emission and related physical processes. We present the results of an extensive parametric study performed using the state-of-the-art simulation toolkit Geant4-DNA for modeling electron-liquid water interactions. It is shown that the typical lifetime of an electron in an avalanche is about 0.1 to 0.2 picoseconds and that the electron experiences about 4 bounces before ending up in liquid water. In addition, it is shown that the secondary electrons are formed in a layer adjacent to the nano-rupture surface that is only a few nanometres thin. The secondary electron velocity distribution at the moment of the electron birth, the velocity space of electrons (re-)emitted from the water, and the velocity space of electrons at the moment of their impact to the cavity surface are analyzed in detail. Electron bouncing and secondary electron generation efficiency are quantified using the secondary emission coefficient, the secondary emission efficiency, and the effective energy consumed to produce new electrons.
Název v anglickém jazyce
Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water
Popis výsledku anglicky
Recently, a bouncing-like mechanism for electron multiplication inside long nano-ruptures during the early stages of nanosecond discharge in liquid water has been proposed in (Bonaventura 2021 Plasma Sources Sci. Technol. 30 065023). This mechanism leads to the formation of electron avalanches within nano-ruptures caused by strong electrostrictive forces. The avalanche propagation is a self-sustaining process: the electrons emitted from the water surface to the cavity support the propagation of the avalanche and the avalanche itself is a source of the parent electrons impinging on the surface of the nano-rupture and causing secondary emission. We analyze the process of the electron secondary emission directly from the simulation results of the electron avalanche propagation. This allow us to perform an in situ study of the secondary emission and related physical processes. We present the results of an extensive parametric study performed using the state-of-the-art simulation toolkit Geant4-DNA for modeling electron-liquid water interactions. It is shown that the typical lifetime of an electron in an avalanche is about 0.1 to 0.2 picoseconds and that the electron experiences about 4 bounces before ending up in liquid water. In addition, it is shown that the secondary electrons are formed in a layer adjacent to the nano-rupture surface that is only a few nanometres thin. The secondary electron velocity distribution at the moment of the electron birth, the velocity space of electrons (re-)emitted from the water, and the velocity space of electrons at the moment of their impact to the cavity surface are analyzed in detail. Electron bouncing and secondary electron generation efficiency are quantified using the secondary emission coefficient, the secondary emission efficiency, and the effective energy consumed to produce new electrons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Sources Science and Technology
ISSN
0963-0252
e-ISSN
1361-6595
Svazek periodika
31
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000765966700001
EID výsledku v databázi Scopus
2-s2.0-85126724205