Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00126393" target="_blank" >RIV/00216224:14310/22:00126393 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac4ddf/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac4ddf/meta</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ac4ddf" target="_blank" >10.1088/1361-6595/ac4ddf</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water

  • Popis výsledku v původním jazyce

    Recently, a bouncing-like mechanism for electron multiplication inside long nano-ruptures during the early stages of nanosecond discharge in liquid water has been proposed in (Bonaventura 2021 Plasma Sources Sci. Technol. 30 065023). This mechanism leads to the formation of electron avalanches within nano-ruptures caused by strong electrostrictive forces. The avalanche propagation is a self-sustaining process: the electrons emitted from the water surface to the cavity support the propagation of the avalanche and the avalanche itself is a source of the parent electrons impinging on the surface of the nano-rupture and causing secondary emission. We analyze the process of the electron secondary emission directly from the simulation results of the electron avalanche propagation. This allow us to perform an in situ study of the secondary emission and related physical processes. We present the results of an extensive parametric study performed using the state-of-the-art simulation toolkit Geant4-DNA for modeling electron-liquid water interactions. It is shown that the typical lifetime of an electron in an avalanche is about 0.1 to 0.2 picoseconds and that the electron experiences about 4 bounces before ending up in liquid water. In addition, it is shown that the secondary electrons are formed in a layer adjacent to the nano-rupture surface that is only a few nanometres thin. The secondary electron velocity distribution at the moment of the electron birth, the velocity space of electrons (re-)emitted from the water, and the velocity space of electrons at the moment of their impact to the cavity surface are analyzed in detail. Electron bouncing and secondary electron generation efficiency are quantified using the secondary emission coefficient, the secondary emission efficiency, and the effective energy consumed to produce new electrons.

  • Název v anglickém jazyce

    Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water

  • Popis výsledku anglicky

    Recently, a bouncing-like mechanism for electron multiplication inside long nano-ruptures during the early stages of nanosecond discharge in liquid water has been proposed in (Bonaventura 2021 Plasma Sources Sci. Technol. 30 065023). This mechanism leads to the formation of electron avalanches within nano-ruptures caused by strong electrostrictive forces. The avalanche propagation is a self-sustaining process: the electrons emitted from the water surface to the cavity support the propagation of the avalanche and the avalanche itself is a source of the parent electrons impinging on the surface of the nano-rupture and causing secondary emission. We analyze the process of the electron secondary emission directly from the simulation results of the electron avalanche propagation. This allow us to perform an in situ study of the secondary emission and related physical processes. We present the results of an extensive parametric study performed using the state-of-the-art simulation toolkit Geant4-DNA for modeling electron-liquid water interactions. It is shown that the typical lifetime of an electron in an avalanche is about 0.1 to 0.2 picoseconds and that the electron experiences about 4 bounces before ending up in liquid water. In addition, it is shown that the secondary electrons are formed in a layer adjacent to the nano-rupture surface that is only a few nanometres thin. The secondary electron velocity distribution at the moment of the electron birth, the velocity space of electrons (re-)emitted from the water, and the velocity space of electrons at the moment of their impact to the cavity surface are analyzed in detail. Electron bouncing and secondary electron generation efficiency are quantified using the secondary emission coefficient, the secondary emission efficiency, and the effective energy consumed to produce new electrons.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Sources Science and Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Kód UT WoS článku

    000765966700001

  • EID výsledku v databázi Scopus

    2-s2.0-85126724205