Electron cascades and secondary electron emission in graphene under energetic ion irradiation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F21%3A00546981" target="_blank" >RIV/61389021:_____/21:00546981 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/21:00545281
Výsledek na webu
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.224306" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.224306</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.103.224306" target="_blank" >10.1103/PhysRevB.103.224306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electron cascades and secondary electron emission in graphene under energetic ion irradiation
Popis výsledku v původním jazyce
Highly energetic ions traversing a two-dimensional material such as graphene produce strong electronic excitations. Electrons excited to energy states above the work function can give rise to secondary electron emission, reducing the amount of energy that remains in graphene after the ion impact. Electrons can be either emitted (kinetic energy transfer) or captured by the passing ion (potential energy transfer). To elucidate this behavior that is absent in three-dimensional materials, we simulate the electron dynamics in graphene during the first femtoseconds after ion impact. We employ two conceptually different computational methods: a Monte Carlo (MC)-based one, where electrons are treated as classical particles, and time-dependent density functional theory (TDDFT), where electrons are described quantum mechanically. We observe that the linear dependence of electron emission on deposited energy, emerging from MC simulations, becomes sublinear and closer to the TDDFT data when the electrostatic interactions of emitted electrons with graphene are taken into account via complementary particle-in-cell simulations. Our TDDFT simulations show that the probability for electron capture decreases rapidly with increasing ion velocity, whereas secondary electron emission dominates in the high-velocity regime. We estimate that these processes reduce the amount of energy deposited in the graphene layer by 15%-65%, depending on the ion and its velocity. This finding clearly shows that electron emission must be taken into consideration when modeling damage production in two-dimensional materials under ion irradiation.
Název v anglickém jazyce
Electron cascades and secondary electron emission in graphene under energetic ion irradiation
Popis výsledku anglicky
Highly energetic ions traversing a two-dimensional material such as graphene produce strong electronic excitations. Electrons excited to energy states above the work function can give rise to secondary electron emission, reducing the amount of energy that remains in graphene after the ion impact. Electrons can be either emitted (kinetic energy transfer) or captured by the passing ion (potential energy transfer). To elucidate this behavior that is absent in three-dimensional materials, we simulate the electron dynamics in graphene during the first femtoseconds after ion impact. We employ two conceptually different computational methods: a Monte Carlo (MC)-based one, where electrons are treated as classical particles, and time-dependent density functional theory (TDDFT), where electrons are described quantum mechanically. We observe that the linear dependence of electron emission on deposited energy, emerging from MC simulations, becomes sublinear and closer to the TDDFT data when the electrostatic interactions of emitted electrons with graphene are taken into account via complementary particle-in-cell simulations. Our TDDFT simulations show that the probability for electron capture decreases rapidly with increasing ion velocity, whereas secondary electron emission dominates in the high-velocity regime. We estimate that these processes reduce the amount of energy deposited in the graphene layer by 15%-65%, depending on the ion and its velocity. This finding clearly shows that electron emission must be taken into consideration when modeling damage production in two-dimensional materials under ion irradiation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
103
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
224306
Kód UT WoS článku
000662302600001
EID výsledku v databázi Scopus
2-s2.0-85108244408