Graph neural network inspired algorithm for unsupervised network community detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00127675" target="_blank" >RIV/00216224:14310/22:00127675 - isvavai.cz</a>
Výsledek na webu
<a href="https://appliednetsci.springeropen.com/articles/10.1007/s41109-022-00500-z" target="_blank" >https://appliednetsci.springeropen.com/articles/10.1007/s41109-022-00500-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41109-022-00500-z" target="_blank" >10.1007/s41109-022-00500-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph neural network inspired algorithm for unsupervised network community detection
Popis výsledku v původním jazyce
Network community detection often relies on optimizing partition quality functions, like modularity. This optimization appears to be a complex problem traditionally relying on discrete heuristics. And although the problem could be reformulated as continuous optimization, direct application of the standard optimization methods has limited efficiency in overcoming the numerous local extrema. However, the rise of deep learning and its applications to graphs offers new opportunities. And while graph neural networks have been used for supervised and unsupervised learning on networks, their application to modularity optimization has not been explored yet. This paper proposes a new variant of the recurrent graph neural network algorithm for unsupervised network community detection through modularity optimization. The new algorithm’s performance is compared against the state-of-the-art methods. The approach also serves as a proof-of-concept for the broader application of recurrent graph neural networks to unsupervised network optimization.
Název v anglickém jazyce
Graph neural network inspired algorithm for unsupervised network community detection
Popis výsledku anglicky
Network community detection often relies on optimizing partition quality functions, like modularity. This optimization appears to be a complex problem traditionally relying on discrete heuristics. And although the problem could be reformulated as continuous optimization, direct application of the standard optimization methods has limited efficiency in overcoming the numerous local extrema. However, the rise of deep learning and its applications to graphs offers new opportunities. And while graph neural networks have been used for supervised and unsupervised learning on networks, their application to modularity optimization has not been explored yet. This paper proposes a new variant of the recurrent graph neural network algorithm for unsupervised network community detection through modularity optimization. The new algorithm’s performance is compared against the state-of-the-art methods. The approach also serves as a proof-of-concept for the broader application of recurrent graph neural networks to unsupervised network optimization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Network Science
ISSN
2364-8228
e-ISSN
2364-8228
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000850086300002
EID výsledku v databázi Scopus
2-s2.0-85137540458