Network Size Reduction Preserving Optimal Modularity and Clique Partition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00128549" target="_blank" >RIV/00216224:14310/22:00128549 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-10522-7_2" target="_blank" >https://doi.org/10.1007/978-3-031-10522-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-10522-7_2" target="_blank" >10.1007/978-3-031-10522-7_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Network Size Reduction Preserving Optimal Modularity and Clique Partition
Popis výsledku v původním jazyce
Graph clustering and community detection are significant and actively developing topics in network science. Uncovering community structure can provide essential information about the underlying system. In this work, we consider two closely related graph clustering problems. One is the clique partitioning problem, and the other is the maximization of partition quality function called modularity. We are interested in the exact solution. However, both problems are NP-hard. Thus the computational complexity of any existing algorithm makes it impossible to solve the problems exactly for the networks larger than several hundreds of nodes. That is why even a small reduction of network size can significantly improve the speed of finding the solution to these problems. We propose a new method for reducing the network size that preserves the optimal partition in terms of modularity score or the clique partitioning objective function. Furthermore, we prove that the optimal partition of the reduced network has the same quality as the optimal partition of the initial network. We also address the cases where a previously proposed method could provide incorrect results. Finally, we evaluate our method by finding the optimal partitions for two sets of networks. Our results show that the proposed method reduces the network size by 40% on average, decreasing the computation time by about 54%.
Název v anglickém jazyce
Network Size Reduction Preserving Optimal Modularity and Clique Partition
Popis výsledku anglicky
Graph clustering and community detection are significant and actively developing topics in network science. Uncovering community structure can provide essential information about the underlying system. In this work, we consider two closely related graph clustering problems. One is the clique partitioning problem, and the other is the maximization of partition quality function called modularity. We are interested in the exact solution. However, both problems are NP-hard. Thus the computational complexity of any existing algorithm makes it impossible to solve the problems exactly for the networks larger than several hundreds of nodes. That is why even a small reduction of network size can significantly improve the speed of finding the solution to these problems. We propose a new method for reducing the network size that preserves the optimal partition in terms of modularity score or the clique partitioning objective function. Furthermore, we prove that the optimal partition of the reduced network has the same quality as the optimal partition of the initial network. We also address the cases where a previously proposed method could provide incorrect results. Finally, we evaluate our method by finding the optimal partitions for two sets of networks. Our results show that the proposed method reduces the network size by 40% on average, decreasing the computation time by about 54%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
9783031105210
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
19-33
Název nakladatele
Springer, Cham
Místo vydání
Cham
Místo konání akce
Malaga
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000916469700002