Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Network Size Reduction Preserving Optimal Modularity and Clique Partition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00128549" target="_blank" >RIV/00216224:14310/22:00128549 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-10522-7_2" target="_blank" >https://doi.org/10.1007/978-3-031-10522-7_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-10522-7_2" target="_blank" >10.1007/978-3-031-10522-7_2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Network Size Reduction Preserving Optimal Modularity and Clique Partition

  • Popis výsledku v původním jazyce

    Graph clustering and community detection are significant and actively developing topics in network science. Uncovering community structure can provide essential information about the underlying system. In this work, we consider two closely related graph clustering problems. One is the clique partitioning problem, and the other is the maximization of partition quality function called modularity. We are interested in the exact solution. However, both problems are NP-hard. Thus the computational complexity of any existing algorithm makes it impossible to solve the problems exactly for the networks larger than several hundreds of nodes. That is why even a small reduction of network size can significantly improve the speed of finding the solution to these problems. We propose a new method for reducing the network size that preserves the optimal partition in terms of modularity score or the clique partitioning objective function. Furthermore, we prove that the optimal partition of the reduced network has the same quality as the optimal partition of the initial network. We also address the cases where a previously proposed method could provide incorrect results. Finally, we evaluate our method by finding the optimal partitions for two sets of networks. Our results show that the proposed method reduces the network size by 40% on average, decreasing the computation time by about 54%.

  • Název v anglickém jazyce

    Network Size Reduction Preserving Optimal Modularity and Clique Partition

  • Popis výsledku anglicky

    Graph clustering and community detection are significant and actively developing topics in network science. Uncovering community structure can provide essential information about the underlying system. In this work, we consider two closely related graph clustering problems. One is the clique partitioning problem, and the other is the maximization of partition quality function called modularity. We are interested in the exact solution. However, both problems are NP-hard. Thus the computational complexity of any existing algorithm makes it impossible to solve the problems exactly for the networks larger than several hundreds of nodes. That is why even a small reduction of network size can significantly improve the speed of finding the solution to these problems. We propose a new method for reducing the network size that preserves the optimal partition in terms of modularity score or the clique partitioning objective function. Furthermore, we prove that the optimal partition of the reduced network has the same quality as the optimal partition of the initial network. We also address the cases where a previously proposed method could provide incorrect results. Finally, we evaluate our method by finding the optimal partitions for two sets of networks. Our results show that the proposed method reduces the network size by 40% on average, decreasing the computation time by about 54%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science

  • ISBN

    9783031105210

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    19-33

  • Název nakladatele

    Springer, Cham

  • Místo vydání

    Cham

  • Místo konání akce

    Malaga

  • Datum konání akce

    1. 1. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000916469700002