Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weak disconjugacy, weak controllability, and genera of conjoined bases for linear Hamiltonian systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129036" target="_blank" >RIV/00216224:14310/22:00129036 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10231-022-01194-x" target="_blank" >https://link.springer.com/article/10.1007/s10231-022-01194-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-022-01194-x" target="_blank" >10.1007/s10231-022-01194-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weak disconjugacy, weak controllability, and genera of conjoined bases for linear Hamiltonian systems

  • Popis výsledku v původním jazyce

    In this paper, we discuss mutual interrelations between the notions of weak disconjugacy and weak controllability for linear Hamiltonian differential systems. These notions have been used in connection with the study of exponential dichotomy, nonoscillation, and dissipative control processes for these systems [e.g. (Johnson et al., in: Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control developments in mathematics, Springer, Cham, 2016)]. As our main results, we derive characterizations of the weak controllability and weak disconjugacy in terms of properties of certain subspaces arising in the recently introduced theory of genera of conjoined bases for linear Hamiltonian systems (Sepitka in J Dyn Differ Equ 32(3):1139-1155, 2020). We also present new results regarding the zero value of the maximal order of abnormality of the system in terms of a weak controllability condition, or in terms of a weak disconjugacy condition when the system is nonoscillatory and satisfies the Legendre condition. In our accompanying comments, we highlight the connections of the theory of genera of conjoined bases with the existence of principal solutions at infinity, which arise in the study of weakly disconjugate linear Hamiltonian systems. The results in this paper may be regarded as a completion and clarification of the previous considerations in the literature about the weak disconjugacy and weak controllability conditions for linear Hamiltonian systems [e.g. (Fabbri et al. in: J Math Anal Appl 380(2):853-864, 2011), (Johnson et al., in Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control developments in mathematics, Springer, Cham, 2016)].

  • Název v anglickém jazyce

    Weak disconjugacy, weak controllability, and genera of conjoined bases for linear Hamiltonian systems

  • Popis výsledku anglicky

    In this paper, we discuss mutual interrelations between the notions of weak disconjugacy and weak controllability for linear Hamiltonian differential systems. These notions have been used in connection with the study of exponential dichotomy, nonoscillation, and dissipative control processes for these systems [e.g. (Johnson et al., in: Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control developments in mathematics, Springer, Cham, 2016)]. As our main results, we derive characterizations of the weak controllability and weak disconjugacy in terms of properties of certain subspaces arising in the recently introduced theory of genera of conjoined bases for linear Hamiltonian systems (Sepitka in J Dyn Differ Equ 32(3):1139-1155, 2020). We also present new results regarding the zero value of the maximal order of abnormality of the system in terms of a weak controllability condition, or in terms of a weak disconjugacy condition when the system is nonoscillatory and satisfies the Legendre condition. In our accompanying comments, we highlight the connections of the theory of genera of conjoined bases with the existence of principal solutions at infinity, which arise in the study of weakly disconjugate linear Hamiltonian systems. The results in this paper may be regarded as a completion and clarification of the previous considerations in the literature about the weak disconjugacy and weak controllability conditions for linear Hamiltonian systems [e.g. (Fabbri et al. in: J Math Anal Appl 380(2):853-864, 2011), (Johnson et al., in Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control developments in mathematics, Springer, Cham, 2016)].

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-01246S" target="_blank" >GA19-01246S: Nová oscilační teorie pro lineární hamiltonovské a symplektické systémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Svazek periodika

    201

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

    2121-2136

  • Kód UT WoS článku

    000751728400001

  • EID výsledku v databázi Scopus

    2-s2.0-85124327775