Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129420" target="_blank" >RIV/00216224:14310/22:00129420 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S0013091522000426" target="_blank" >https://doi.org/10.1017/S0013091522000426</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0013091522000426" target="_blank" >10.1017/S0013091522000426</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces

  • Popis výsledku v původním jazyce

    A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.

  • Název v anglickém jazyce

    Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces

  • Popis výsledku anglicky

    A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Proceedings of the Edinburgh Mathematical Society

  • ISSN

    0013-0915

  • e-ISSN

    1464-3839

  • Svazek periodika

    65

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    32

  • Strana od-do

    958-989

  • Kód UT WoS článku

    000867457500001

  • EID výsledku v databázi Scopus

    2-s2.0-85147498431