Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129420" target="_blank" >RIV/00216224:14310/22:00129420 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1017/S0013091522000426" target="_blank" >https://doi.org/10.1017/S0013091522000426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091522000426" target="_blank" >10.1017/S0013091522000426</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces
Popis výsledku v původním jazyce
A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.
Název v anglickém jazyce
Polynomial null solutions to bosonic Laplacians, bosonic bergman and hardy spaces
Popis výsledku anglicky
A bosonic Laplacian, which is a generalization of Laplacian, is constructed as a second-order conformally invariant differential operator acting on functions taking values in irreducible representations of the special orthogonal group, hence of the spin group. In this paper, we firstly introduce some properties for homogeneous polynomial null solutions to bosonic Laplacians, which give us some important results, such as an orthogonal decomposition of the space of polynomials in terms of homogeneous polynomial null solutions to bosonic Laplacians, etc. This work helps us to introduce Bergman spaces related to bosonic Laplacians, named as bosonic Bergman spaces, in higher spin spaces. Reproducing kernels for bosonic Bergman spaces in the unit ball and a description of bosonic Bergman projection are given as well. At the end, we investigate bosonic Hardy spaces, which are considered as generalizations of harmonic Hardy spaces. Analogs of some well-known results for harmonic Hardy spaces are provided here. For instance, connections to certain complex Borel measure spaces, growth estimates for functions in the bosonic Hardy spaces, etc.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Lineární a nelineární eliptické rovnice se singulárními daty a související problémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
1464-3839
Svazek periodika
65
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
958-989
Kód UT WoS článku
000867457500001
EID výsledku v databázi Scopus
2-s2.0-85147498431