Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On geometry of 2-nondegenerate CR structures of hypersurface type and flag structures on leaf spaces of Levi foliations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00130833" target="_blank" >RIV/00216224:14310/23:00130833 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.aim.2022.108850" target="_blank" >https://doi.org/10.1016/j.aim.2022.108850</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2022.108850" target="_blank" >10.1016/j.aim.2022.108850</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On geometry of 2-nondegenerate CR structures of hypersurface type and flag structures on leaf spaces of Levi foliations

  • Popis výsledku v původním jazyce

    We construct canonical absolute parallelisms over realanalytic manifolds equipped with 2-nondegenerate, hypersurface-type CR structures of arbitrary odd dimension not less than 7 whose Levi kernel has constant rank belonging to a broad subclass of CR structures that we label as recoverable. For this we develop a new approach based on a reduction to a special flag structure, called the dynamical Legendrian contact structure, on the leaf space of the CR structure's associated Levi foliation. This extends the results of [23] from the case of regular CR symbols constituting a discrete set in the set of all CR symbols to the case of the arbitrary CR symbols for which the original CR structure can be uniquely recovered from its corresponding dynamical Legendrian contact structure. We find an explicit criterion for this recoverability. In particular, if the rank of the Levi kernel is 1 and the dimension of the CR manifold is not less than 7, then for each given signature of the reduced Levi form in the space of all CR symbols (which depend on continuous parameters) there are no more than 2 symbols for which the aforementioned recoverability fails, and while the present method is applicable for all but those 2 cases, they can be treated separately by the method of [23]. Our method clarifies the relationship between the bigraded Tanaka prolongation of regular symbols developed in [23] and their usual Tanaka prolongation, providing a geometric interpretation of conditions under which they are equal. Motivated by the search for homogeneous models with given nonregular symbols, we also describe a process of reduction from the original natural frame bundle, which is inevitable for interpretation they equal. Motivated by the search for homogeneous models with given nonregular symbols, we also describe a process of reduction from the original natural frame bundle, which is inevitable for structures with nonregular CR symbols. We demonstrate this reduction procedure for examples whose underlying manifolds have dimension 7 and 9. We show that, for any fixed rank r &gt; 1, in the set of all CR symbols associated with 2-nondegenerate, hypersurface-type CR manifolds of odd dimension greater than 4r +1 with rank r Levi kernel, the CR symbols not associated with any homogeneous model are generic, and, for r = 1, the same result holds if the CR structure is pseudoconvex.

  • Název v anglickém jazyce

    On geometry of 2-nondegenerate CR structures of hypersurface type and flag structures on leaf spaces of Levi foliations

  • Popis výsledku anglicky

    We construct canonical absolute parallelisms over realanalytic manifolds equipped with 2-nondegenerate, hypersurface-type CR structures of arbitrary odd dimension not less than 7 whose Levi kernel has constant rank belonging to a broad subclass of CR structures that we label as recoverable. For this we develop a new approach based on a reduction to a special flag structure, called the dynamical Legendrian contact structure, on the leaf space of the CR structure's associated Levi foliation. This extends the results of [23] from the case of regular CR symbols constituting a discrete set in the set of all CR symbols to the case of the arbitrary CR symbols for which the original CR structure can be uniquely recovered from its corresponding dynamical Legendrian contact structure. We find an explicit criterion for this recoverability. In particular, if the rank of the Levi kernel is 1 and the dimension of the CR manifold is not less than 7, then for each given signature of the reduced Levi form in the space of all CR symbols (which depend on continuous parameters) there are no more than 2 symbols for which the aforementioned recoverability fails, and while the present method is applicable for all but those 2 cases, they can be treated separately by the method of [23]. Our method clarifies the relationship between the bigraded Tanaka prolongation of regular symbols developed in [23] and their usual Tanaka prolongation, providing a geometric interpretation of conditions under which they are equal. Motivated by the search for homogeneous models with given nonregular symbols, we also describe a process of reduction from the original natural frame bundle, which is inevitable for interpretation they equal. Motivated by the search for homogeneous models with given nonregular symbols, we also describe a process of reduction from the original natural frame bundle, which is inevitable for structures with nonregular CR symbols. We demonstrate this reduction procedure for examples whose underlying manifolds have dimension 7 and 9. We show that, for any fixed rank r &gt; 1, in the set of all CR symbols associated with 2-nondegenerate, hypersurface-type CR manifolds of odd dimension greater than 4r +1 with rank r Levi kernel, the CR symbols not associated with any homogeneous model are generic, and, for r = 1, the same result holds if the CR structure is pseudoconvex.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

    1090-2082

  • Svazek periodika

    413

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    65

  • Strana od-do

    1-65

  • Kód UT WoS článku

    000921531400001

  • EID výsledku v databázi Scopus

    2-s2.0-85145853577