Linear Orthosets and Orthogeometries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134224" target="_blank" >RIV/00216224:14310/23:00134224 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10773-023-05282-3" target="_blank" >https://doi.org/10.1007/s10773-023-05282-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-023-05282-3" target="_blank" >10.1007/s10773-023-05282-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear Orthosets and Orthogeometries
Popis výsledku v původním jazyce
Anisotropic Hermitian spaces can be characterised as anisotropic orthogeometries, that is, as projective spaces that are additionally endowed with a suitable orthogonality relation. But linear dependence is uniquely determined by the orthogonality relation and hence it makes sense to investigate solely the latter. It turns out that by means of orthosets, which are structures based on a symmetric, irreflexive binary relation, we can achieve a quite compact description of the inner-product spaces under consideration. In particular, Pasch's axiom, or any of its variants, is no longer needed. Having established the correspondence between anisotropic Hermitian spaces on the one hand and so-called linear orthosets on the other hand, we moreover consider the respective symmetries. We present a version of Wigner's Theorem adapted to the present context.
Název v anglickém jazyce
Linear Orthosets and Orthogeometries
Popis výsledku anglicky
Anisotropic Hermitian spaces can be characterised as anisotropic orthogeometries, that is, as projective spaces that are additionally endowed with a suitable orthogonality relation. But linear dependence is uniquely determined by the orthogonality relation and hence it makes sense to investigate solely the latter. It turns out that by means of orthosets, which are structures based on a symmetric, irreflexive binary relation, we can achieve a quite compact description of the inner-product spaces under consideration. In particular, Pasch's axiom, or any of its variants, is no longer needed. Having established the correspondence between anisotropic Hermitian spaces on the one hand and so-called linear orthosets on the other hand, we moreover consider the respective symmetries. We present a version of Wigner's Theorem adapted to the present context.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Svazek periodika
62
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000945772800001
EID výsledku v databázi Scopus
2-s2.0-85150208887