Finitary Prelinear and Linear Orthosets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00132883" target="_blank" >RIV/00216224:14310/23:00132883 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10773-023-05356-2" target="_blank" >https://doi.org/10.1007/s10773-023-05356-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-023-05356-2" target="_blank" >10.1007/s10773-023-05356-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finitary Prelinear and Linear Orthosets
Popis výsledku v původním jazyce
An orthoset is a set equipped with a symmetric and irreflexive binary relation. A linear orthoset is an orthoset such that for any two distinct elements e, f there is a third element g such that exactly one of f and g is orthogonal to e and the pairs e, f and e, g have the same orthogonal complement. Linear orthosets naturally arise from anisotropic Hermitian spaces. We moreover define an orthoset to be prelinear by assuming the above-mentioned property for non-orthogonal pairs e, f only. In this paper, we establish some structural properties of prelinear and linear orthosets under the assumption of finiteness or finite rank.
Název v anglickém jazyce
Finitary Prelinear and Linear Orthosets
Popis výsledku anglicky
An orthoset is a set equipped with a symmetric and irreflexive binary relation. A linear orthoset is an orthoset such that for any two distinct elements e, f there is a third element g such that exactly one of f and g is orthogonal to e and the pairs e, f and e, g have the same orthogonal complement. Linear orthosets naturally arise from anisotropic Hermitian spaces. We moreover define an orthoset to be prelinear by assuming the above-mentioned property for non-orthogonal pairs e, f only. In this paper, we establish some structural properties of prelinear and linear orthosets under the assumption of finiteness or finite rank.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Svazek periodika
62
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
001003524700001
EID výsledku v databázi Scopus
2-s2.0-85161235045