Group-valued continuous functions with the topology of pointwise convergence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F10%3A00005948" target="_blank" >RIV/44555601:13440/10:00005948 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Group-valued continuous functions with the topology of pointwise convergence
Popis výsledku v původním jazyce
Let G be a topological group with the identity element e Given a space X, we denote by COX G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence. and we say that X is (a) G-regular if, for each closed setF subset of X and every point x is an element of X F, there exist f is an element of C-p(X G) and g is an element of G {e} such that f(x) = g and f (F} subset of {e}, (b) G* -regular provided that there exists g is an element of G {e} such that, for each closed set F subset of X and every point x is an element of X F, one can find f is an element of C-p(X G) With f (x) - g and f (F) subset of {e} Spaces X and Y are G-equivalent provided that the topological groups C-p (X, G) and C-p(Y G) are topologically isomorphic. We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of C-p(X,G) Since -equivalence coinci
Název v anglickém jazyce
Group-valued continuous functions with the topology of pointwise convergence
Popis výsledku anglicky
Let G be a topological group with the identity element e Given a space X, we denote by COX G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence. and we say that X is (a) G-regular if, for each closed setF subset of X and every point x is an element of X F, there exist f is an element of C-p(X G) and g is an element of G {e} such that f(x) = g and f (F} subset of {e}, (b) G* -regular provided that there exists g is an element of G {e} such that, for each closed set F subset of X and every point x is an element of X F, one can find f is an element of C-p(X G) With f (x) - g and f (F) subset of {e} Spaces X and Y are G-equivalent provided that the topological groups C-p (X, G) and C-p(Y G) are topologically isomorphic. We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of C-p(X,G) Since -equivalence coinci
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Svazek periodika
157
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000277677500028
EID výsledku v databázi Scopus
—