Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00138327" target="_blank" >RIV/00216224:14310/24:00138327 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10701-024-00809-y" target="_blank" >https://link.springer.com/article/10.1007/s10701-024-00809-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10701-024-00809-y" target="_blank" >10.1007/s10701-024-00809-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content
Popis výsledku v původním jazyce
There is solid consensus among physicists and philosophers that, in gauge field theory, for a quantity to be physically meaningful or real, it must be gauge-invariant. Yet, every "elementary" field in the Standard Model of particle physics is actually gauge-variant. This has led a number of researchers to insist that new manifestly gauge-invariant approaches must be established. Indeed, in the foundational literature, dissatisfaction with standard methods for reducing gauge symmetries has been expressed: Spontaneous symmetry breaking is deemed conceptually dubious, while gauge fixing suffers the same limitations and is subject to the same criticisms as coordinate choices in General Relativity. An alternative gauge-invariant proposal was recently introduced in the literature, the so-called "dressing field method" (DFM). It is a mathematically subtle tool, and unfortunately prone to be confused with simple gauge transformations, hence with standard gauge fixings. As a matter of fact, in the physics literature the two are often conflated, and in the philosophy community some doubts have been raised about whether there is any substantial difference between them. Clarifying this issue is of special significance for anyone interested in both the foundational issues of gauge theories and their invariant formulation. It is thus our objective to establish as precisely as possible the technical and conceptual distinctions between the DFM and gauge fixing.
Název v anglickém jazyce
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content
Popis výsledku anglicky
There is solid consensus among physicists and philosophers that, in gauge field theory, for a quantity to be physically meaningful or real, it must be gauge-invariant. Yet, every "elementary" field in the Standard Model of particle physics is actually gauge-variant. This has led a number of researchers to insist that new manifestly gauge-invariant approaches must be established. Indeed, in the foundational literature, dissatisfaction with standard methods for reducing gauge symmetries has been expressed: Spontaneous symmetry breaking is deemed conceptually dubious, while gauge fixing suffers the same limitations and is subject to the same criticisms as coordinate choices in General Relativity. An alternative gauge-invariant proposal was recently introduced in the literature, the so-called "dressing field method" (DFM). It is a mathematically subtle tool, and unfortunately prone to be confused with simple gauge transformations, hence with standard gauge fixings. As a matter of fact, in the physics literature the two are often conflated, and in the philosophy community some doubts have been raised about whether there is any substantial difference between them. Clarifying this issue is of special significance for anyone interested in both the foundational issues of gauge theories and their invariant formulation. It is thus our objective to establish as precisely as possible the technical and conceptual distinctions between the DFM and gauge fixing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Physics
ISSN
0015-9018
e-ISSN
1572-9516
Svazek periodika
54
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
001357778800001
EID výsledku v databázi Scopus
2-s2.0-85209568206