Algebraic Reasoning over Relational Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139638" target="_blank" >RIV/00216224:14310/24:00139638 - isvavai.cz</a>
Výsledek na webu
<a href="https://entics.episciences.org/14598" target="_blank" >https://entics.episciences.org/14598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46298/entics.14598" target="_blank" >10.46298/entics.14598</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic Reasoning over Relational Structures
Popis výsledku v původním jazyce
Many important computational structures involve an intricate interplay between algebraic features (given by operations on the underlying set) and relational features (taking account of notions such as order or distance). This paper investigates algebras over relational structures axiomatized by an infinitary Horn theory, which subsume, for example, partial algebras, various incarnations of ordered algebras, quantitative algebras introduced by Mardare, Panangaden, and Plotkin, and their recent extension to generalized metric spaces and lifted algebraic signatures by Mio, Sarkis, and Vignudelli. To this end, we develop the notion of clustered equation, which is inspired by Mardare et al.'s basic conditional equations in the theory of quantitative algebras, at the level of generality of arbitrary relational structures, and we prove that it is equivalent to an abstract categorical form of equation earlier introduced by Milius and Urbat. Our main results are a family of Birkhoff-type variety theorems (classifying the expressive power of clustered equations) and an exactness theorem (classifying abstract equations by a congruence property).
Název v anglickém jazyce
Algebraic Reasoning over Relational Structures
Popis výsledku anglicky
Many important computational structures involve an intricate interplay between algebraic features (given by operations on the underlying set) and relational features (taking account of notions such as order or distance). This paper investigates algebras over relational structures axiomatized by an infinitary Horn theory, which subsume, for example, partial algebras, various incarnations of ordered algebras, quantitative algebras introduced by Mardare, Panangaden, and Plotkin, and their recent extension to generalized metric spaces and lifted algebraic signatures by Mio, Sarkis, and Vignudelli. To this end, we develop the notion of clustered equation, which is inspired by Mardare et al.'s basic conditional equations in the theory of quantitative algebras, at the level of generality of arbitrary relational structures, and we prove that it is equivalent to an abstract categorical form of equation earlier introduced by Milius and Urbat. Our main results are a family of Birkhoff-type variety theorems (classifying the expressive power of clustered equations) and an exactness theorem (classifying abstract equations by a congruence property).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-02964S" target="_blank" >GA22-02964S: Obohacené kategorie a jejich aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Fortieth Conference on the Mathematical Foundations of Programming Semantics, Volume 4
ISBN
—
ISSN
2969-2431
e-ISSN
2969-2431
Počet stran výsledku
20
Strana od-do
„13-1“-„13-20“
Název nakladatele
Inria
Místo vydání
France
Místo konání akce
Oxford
Datum konání akce
19. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—