Modifications of Expansion Trees for Weak Bisimulation in BPA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F02%3A00006476" target="_blank" >RIV/00216224:14330/02:00006476 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modifications of Expansion Trees for Weak Bisimulation in BPA
Popis výsledku v původním jazyce
The purpose of this work is to examine the decidability problem of weak bisimilarity for BPA-processes. It has been known that strong bisimilarity, which may be considered a special case of weak bisimilarity, where the internal (silent) action $tau$ istreated equally to observable actions, is decidable for BPA-processes (cite{BBK,BCS,CHS}). For strong bisimilarity, these processes are finitely branching and so for two non-bisimilar processes there exists a level $n$ that distinguishes the two processes. Additionally, from the decidability of whether two processes are equivalent at a given level $n$, semidecidability of strong non-bisimilarity directly follows. There are two closely related approaches to semidecidability of strong equivalence: construction of a (finite) bisimulation or expansion tree and construction of a finite Caucal base. We have attempted to find out if any of the above mentioned approaches could be generalized to (semi)decide weak bisimilarity.
Název v anglickém jazyce
Modifications of Expansion Trees for Weak Bisimulation in BPA
Popis výsledku anglicky
The purpose of this work is to examine the decidability problem of weak bisimilarity for BPA-processes. It has been known that strong bisimilarity, which may be considered a special case of weak bisimilarity, where the internal (silent) action $tau$ istreated equally to observable actions, is decidable for BPA-processes (cite{BBK,BCS,CHS}). For strong bisimilarity, these processes are finitely branching and so for two non-bisimilar processes there exists a level $n$ that distinguishes the two processes. Additionally, from the decidability of whether two processes are equivalent at a given level $n$, semidecidability of strong non-bisimilarity directly follows. There are two closely related approaches to semidecidability of strong equivalence: construction of a (finite) bisimulation or expansion tree and construction of a finite Caucal base. We have attempted to find out if any of the above mentioned approaches could be generalized to (semi)decide weak bisimilarity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2002
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Verification of Infinite-State Systems Infinity'2002
ISBN
0444512918
ISSN
—
e-ISSN
—
Počet stran výsledku
21
Strana od-do
1
Název nakladatele
Elsevier Science Publishers
Místo vydání
The Netherlands
Místo konání akce
24.8.2002, Brno, Czech Republic
Datum konání akce
1. 1. 2002
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—