Region proximity in metric spaces and its use for approximate similarity search
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F03%3A00008675" target="_blank" >RIV/00216224:14330/03:00008675 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Region proximity in metric spaces and its use for approximate similarity search
Popis výsledku v původním jazyce
Similarity search structures for metric data typically bound object partitions by ball regions. Since regions can overlap, a relevant issue is to estimate the proximity of regions in order to predict the number of objects in the regions' intersection. This paper analyzes the problem using a probabilistic approach and provides a solution that effectively computes the proximity through realistic heuristics that only require small amounts of auxiliary data. An extensive simulation to validate the techniqueis provided. An application is developed to demonstrate how the proximity measure can be successfully applied to the approximate similarity search. Search speedup is achieved by ignoring data regions whose proximity to the query region is smaller than auser-defined threshold. This idea is implemented in a metric tree environment for the similarity range and "nearest neighbors" queries. Several measures of efficiency and effectiveness are applied to evaluate proposed approximate search
Název v anglickém jazyce
Region proximity in metric spaces and its use for approximate similarity search
Popis výsledku anglicky
Similarity search structures for metric data typically bound object partitions by ball regions. Since regions can overlap, a relevant issue is to estimate the proximity of regions in order to predict the number of objects in the regions' intersection. This paper analyzes the problem using a probabilistic approach and provides a solution that effectively computes the proximity through realistic heuristics that only require small amounts of auxiliary data. An extensive simulation to validate the techniqueis provided. An application is developed to demonstrate how the proximity measure can be successfully applied to the approximate similarity search. Search speedup is achieved by ignoring data regions whose proximity to the query region is smaller than auser-defined threshold. This idea is implemented in a metric tree environment for the similarity range and "nearest neighbors" queries. Several measures of efficiency and effectiveness are applied to evaluate proposed approximate search
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Information Systems
ISSN
1046-8188
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
192-227
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—