Estimating Proximity of Metric Ball Regions for Multimedia Data Indexing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F00%3A00002644" target="_blank" >RIV/00216224:14330/00:00002644 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating Proximity of Metric Ball Regions for Multimedia Data Indexing
Popis výsledku v původním jazyce
The problem of defining and computing proximity of regions constraining objects from generic metric spaces is investigated. Approximate, computationally fast, approach is developed for pairs of metric ball regions, which covers the needs of current systems for processing data through distances. The validity and precision of proposed solution is verified by extensive simulation on three substantially different data files. The precision of obtained results is very satisfactory. Besides other possibilities, the proximity measure can be applied to improve the performance of metric trees, developed for multimedia similarity search indexing. Specific system areas concern splitting and merging of regions, pruning regions during similarity retrieval, ranking regions for best case matching, and declustering regions to achieve parallelism.
Název v anglickém jazyce
Estimating Proximity of Metric Ball Regions for Multimedia Data Indexing
Popis výsledku anglicky
The problem of defining and computing proximity of regions constraining objects from generic metric spaces is investigated. Approximate, computationally fast, approach is developed for pairs of metric ball regions, which covers the needs of current systems for processing data through distances. The validity and precision of proposed solution is verified by extensive simulation on three substantially different data files. The precision of obtained results is very satisfactory. Besides other possibilities, the proximity measure can be applied to improve the performance of metric trees, developed for multimedia similarity search indexing. Specific system areas concern splitting and merging of regions, pruning regions during similarity retrieval, ranking regions for best case matching, and declustering regions to achieve parallelism.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2000
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Information Systems
ISBN
3-540-4118
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
—
Datum konání akce
—
Typ akce podle státní příslušnosti
—
Kód UT WoS článku
—