Comparison Analysis of the Pearson's Phi-Square Test and Correlation Metric Effectiveness to Form the Subset of Differently Expressed and Mutually Correlated Genes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43897028" target="_blank" >RIV/44555601:13440/22:43897028 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85133559357&origin=resultslist&sort=plf-f" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85133559357&origin=resultslist&sort=plf-f</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison Analysis of the Pearson's Phi-Square Test and Correlation Metric Effectiveness to Form the Subset of Differently Expressed and Mutually Correlated Genes
Popis výsledku v původním jazyce
The development of patients' health monitoring systems based on gene expression data is a very important direction of current bioinformatics. In this instance, the allocation of both differently expressed and mutually correlated gene expression profiles (GEP) which allow monitoring in real-time the patients' health with high accuracy is a very important step of this problem solution. There are various types of similarity metrics to identify the level of GEP proximity. In this research, we compare the Pearson chi-square test and correlation metric to evaluate the gene expression profiles proximity. The evaluation of appropriate metric effectiveness has been executed by applying the object's classification quality criteria such as accuracy, f-score and Matthews correlation coefficient (MCC). The simulation results have shown that the metric based on Pearson's phi-square coefficient is significantly effective in comparison with the correlation metric to allocate the mutually similar gene expression profiles and, this metric can be used when the differently expressed and mutually correlated GEP will be extracted using various clustering algorithms
Název v anglickém jazyce
Comparison Analysis of the Pearson's Phi-Square Test and Correlation Metric Effectiveness to Form the Subset of Differently Expressed and Mutually Correlated Genes
Popis výsledku anglicky
The development of patients' health monitoring systems based on gene expression data is a very important direction of current bioinformatics. In this instance, the allocation of both differently expressed and mutually correlated gene expression profiles (GEP) which allow monitoring in real-time the patients' health with high accuracy is a very important step of this problem solution. There are various types of similarity metrics to identify the level of GEP proximity. In this research, we compare the Pearson chi-square test and correlation metric to evaluate the gene expression profiles proximity. The evaluation of appropriate metric effectiveness has been executed by applying the object's classification quality criteria such as accuracy, f-score and Matthews correlation coefficient (MCC). The simulation results have shown that the metric based on Pearson's phi-square coefficient is significantly effective in comparison with the correlation metric to allocate the mutually similar gene expression profiles and, this metric can be used when the differently expressed and mutually correlated GEP will be extracted using various clustering algorithms
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
1613-0073
Počet stran výsledku
11
Strana od-do
93-102
Název nakladatele
CEUR-WS
Místo vydání
Germany
Místo konání akce
Khmelnick
Datum konání akce
23. 3. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—