Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the JointUse of Clustering Technique and Convolutional Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43897173" target="_blank" >RIV/44555601:13440/22:43897173 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/12/22/11795" target="_blank" >https://www.mdpi.com/2076-3417/12/22/11795</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app122211795" target="_blank" >10.3390/app122211795</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the JointUse of Clustering Technique and Convolutional Neural Network

  • Popis výsledku v původním jazyce

    The development of hybrid models focused on gene expression data processing for the allocation of differently expressed and mutually correlated genes is one of the current directions of modern bioinformatics. The solution of this problem can allow us to improve the effectiveness of the existing systems for complex diseases diagnosis based on gene expression data analysis on the one hand and increase the efficiency of gene regulatory network reconstruction procedure by more careful selection of genes considering the type of disease on the other hand. In this research, we propose the stepwise procedure to form the subsets of mutually correlated and differently expressed gene expression profiles (GEP). Firstly, we allocate the informative GEP in terms of statistical and entropy criteria using the Harrington desirability function. Then, we performed the cluster analysis using SOTA and spectral clustering algorithms implemented within the framework of objective clustering inductive technology. The result of this step implementation is a set of clusters containing co- and differently expressed GEP. Validation of the model was performed using a one-dimensional two-layer convolutional neural network (CNN). The analysis of the simulation results has shown the high efficiency of the proposed model. The clusters of GEP formed based on the clustering quality criteria values allowed us to identify the investigated objects with high accuracy. Moreover, the simulation results have also shown that the hybrid inductive model based on the spectral clustering algorithm is more effective in comparison with the use of the SOTA clustering algorithm in terms of both the complexity of the optimal cluster structure forming and the classification accuracy of the objects that contain the allocated gene expression data as attributes.

  • Název v anglickém jazyce

    Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the JointUse of Clustering Technique and Convolutional Neural Network

  • Popis výsledku anglicky

    The development of hybrid models focused on gene expression data processing for the allocation of differently expressed and mutually correlated genes is one of the current directions of modern bioinformatics. The solution of this problem can allow us to improve the effectiveness of the existing systems for complex diseases diagnosis based on gene expression data analysis on the one hand and increase the efficiency of gene regulatory network reconstruction procedure by more careful selection of genes considering the type of disease on the other hand. In this research, we propose the stepwise procedure to form the subsets of mutually correlated and differently expressed gene expression profiles (GEP). Firstly, we allocate the informative GEP in terms of statistical and entropy criteria using the Harrington desirability function. Then, we performed the cluster analysis using SOTA and spectral clustering algorithms implemented within the framework of objective clustering inductive technology. The result of this step implementation is a set of clusters containing co- and differently expressed GEP. Validation of the model was performed using a one-dimensional two-layer convolutional neural network (CNN). The analysis of the simulation results has shown the high efficiency of the proposed model. The clusters of GEP formed based on the clustering quality criteria values allowed us to identify the investigated objects with high accuracy. Moreover, the simulation results have also shown that the hybrid inductive model based on the spectral clustering algorithm is more effective in comparison with the use of the SOTA clustering algorithm in terms of both the complexity of the optimal cluster structure forming and the classification accuracy of the objects that contain the allocated gene expression data as attributes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    12(22)

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    23

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    000887113100001

  • EID výsledku v databázi Scopus