A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897684" target="_blank" >RIV/44555601:13440/23:43897684 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85160859759&origin=resultslist&sort=plf-f#metrics" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85160859759&origin=resultslist&sort=plf-f#metrics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13106022" target="_blank" >10.3390/app13106022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques
Popis výsledku v původním jazyce
One of the current focuses of modern bioinformatics is the development of hybrid models to process gene expression data, in order to create diagnostic systems for various diseases. In this study, we propose a solution to this problem that combines an inductive spectral clustering algorithm, random forest classifier, convolutional neural network, and alternative voting method for making the final decision about patient condition. In the first stage, we apply the spectral clustering algorithm to gene expression profiles using inductive methods of objective clustering, with the calculation of internal, external, and balance clustering quality criteria. This results in clusters of mutually correlated and differently expressed gene expression profiles. In the second stage, we apply the random forest classifier and convolutional neural network to identify the examined objects, containing as attributes the gene expression values in the allocated clusters.The presented research solves both binary- and multi-classification tasks. The final decision about the patient?s condition is made using the alternative voting method, considering the classification results based on the gene expression data in various clusters. The simulation results showed that the proposed technique was highly effective, achieving a high accuracy in object identification when both classifiers were used. However, the convolutional neural network had a significantly higher data processing efficiency than the random forest algorithm, due to its substantially shorter processing time.
Název v anglickém jazyce
A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques
Popis výsledku anglicky
One of the current focuses of modern bioinformatics is the development of hybrid models to process gene expression data, in order to create diagnostic systems for various diseases. In this study, we propose a solution to this problem that combines an inductive spectral clustering algorithm, random forest classifier, convolutional neural network, and alternative voting method for making the final decision about patient condition. In the first stage, we apply the spectral clustering algorithm to gene expression profiles using inductive methods of objective clustering, with the calculation of internal, external, and balance clustering quality criteria. This results in clusters of mutually correlated and differently expressed gene expression profiles. In the second stage, we apply the random forest classifier and convolutional neural network to identify the examined objects, containing as attributes the gene expression values in the allocated clusters.The presented research solves both binary- and multi-classification tasks. The final decision about the patient?s condition is made using the alternative voting method, considering the classification results based on the gene expression data in various clusters. The simulation results showed that the proposed technique was highly effective, achieving a high accuracy in object identification when both classifiers were used. However, the convolutional neural network had a significantly higher data processing efficiency than the random forest algorithm, due to its substantially shorter processing time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
"nestrankovano"
Kód UT WoS článku
000995665800001
EID výsledku v databázi Scopus
—