Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897684" target="_blank" >RIV/44555601:13440/23:43897684 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85160859759&origin=resultslist&sort=plf-f#metrics" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85160859759&origin=resultslist&sort=plf-f#metrics</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app13106022" target="_blank" >10.3390/app13106022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques

  • Popis výsledku v původním jazyce

    One of the current focuses of modern bioinformatics is the development of hybrid models to process gene expression data, in order to create diagnostic systems for various diseases. In this study, we propose a solution to this problem that combines an inductive spectral clustering algorithm, random forest classifier, convolutional neural network, and alternative voting method for making the final decision about patient condition. In the first stage, we apply the spectral clustering algorithm to gene expression profiles using inductive methods of objective clustering, with the calculation of internal, external, and balance clustering quality criteria. This results in clusters of mutually correlated and differently expressed gene expression profiles. In the second stage, we apply the random forest classifier and convolutional neural network to identify the examined objects, containing as attributes the gene expression values in the allocated clusters.The presented research solves both binary- and multi-classification tasks. The final decision about the patient?s condition is made using the alternative voting method, considering the classification results based on the gene expression data in various clusters. The simulation results showed that the proposed technique was highly effective, achieving a high accuracy in object identification when both classifiers were used. However, the convolutional neural network had a significantly higher data processing efficiency than the random forest algorithm, due to its substantially shorter processing time.

  • Název v anglickém jazyce

    A Hybrid Model of Cancer Diseases Diagnosis Based on Gene Expression Data with Joint Use of Data Mining Methods and Machine Learning Techniques

  • Popis výsledku anglicky

    One of the current focuses of modern bioinformatics is the development of hybrid models to process gene expression data, in order to create diagnostic systems for various diseases. In this study, we propose a solution to this problem that combines an inductive spectral clustering algorithm, random forest classifier, convolutional neural network, and alternative voting method for making the final decision about patient condition. In the first stage, we apply the spectral clustering algorithm to gene expression profiles using inductive methods of objective clustering, with the calculation of internal, external, and balance clustering quality criteria. This results in clusters of mutually correlated and differently expressed gene expression profiles. In the second stage, we apply the random forest classifier and convolutional neural network to identify the examined objects, containing as attributes the gene expression values in the allocated clusters.The presented research solves both binary- and multi-classification tasks. The final decision about the patient?s condition is made using the alternative voting method, considering the classification results based on the gene expression data in various clusters. The simulation results showed that the proposed technique was highly effective, achieving a high accuracy in object identification when both classifiers were used. However, the convolutional neural network had a significantly higher data processing efficiency than the random forest algorithm, due to its substantially shorter processing time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    000995665800001

  • EID výsledku v databázi Scopus