Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43898000" target="_blank" >RIV/44555601:13440/23:43898000 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/13/21/11823" target="_blank" >https://www.mdpi.com/2076-3417/13/21/11823</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app132111823" target="_blank" >10.3390/app132111823</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification

  • Popis výsledku v původním jazyce

    The importance of gene expression data processing in solving the classification task is determined by its ability to discern intricate patterns and relationships within genetic information, enabling the precise categorization and understanding of various gene expression profiles and their consequential impacts on biological processes and traits. In this study, we investigated various architectures and types of recurrent neural networks focusing on gene expression data. The effectiveness of the appropriate model was evaluated using various classification quality criteria based on type 1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington desirability method, the value of which allowed us to improve the objectivity of the decision making when model effectiveness was evaluated. The final decision regarding model effectiveness was made based on a comprehensive classification quality criterion, which was calculated as the weighted sum of classification accuracy, integrated F1-score index, and loss function values. The simulation results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent layer. We also compared convolutional and recurrent neural networks on gene expression data classification. Although convolutional neural networks showcase benefits in terms of loss function value and training time, a comparative analysis revealed that in terms of classification accuracy calculated on the test data subset, the GRU neural network model is slightly better than the CNN and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases, 952 objects were correctly identified.

  • Název v anglickém jazyce

    Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification

  • Popis výsledku anglicky

    The importance of gene expression data processing in solving the classification task is determined by its ability to discern intricate patterns and relationships within genetic information, enabling the precise categorization and understanding of various gene expression profiles and their consequential impacts on biological processes and traits. In this study, we investigated various architectures and types of recurrent neural networks focusing on gene expression data. The effectiveness of the appropriate model was evaluated using various classification quality criteria based on type 1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington desirability method, the value of which allowed us to improve the objectivity of the decision making when model effectiveness was evaluated. The final decision regarding model effectiveness was made based on a comprehensive classification quality criterion, which was calculated as the weighted sum of classification accuracy, integrated F1-score index, and loss function values. The simulation results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent layer. We also compared convolutional and recurrent neural networks on gene expression data classification. Although convolutional neural networks showcase benefits in terms of loss function value and training time, a comparative analysis revealed that in terms of classification accuracy calculated on the test data subset, the GRU neural network model is slightly better than the CNN and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases, 952 objects were correctly identified.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    19

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    001099489500001

  • EID výsledku v databázi Scopus