Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Convolutional Neural Network for Gene Expression Data Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897056" target="_blank" >RIV/44555601:13440/23:43897056 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-16203-9_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16203-9_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-16203-9_1" target="_blank" >10.1007/978-3-031-16203-9_1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Convolutional Neural Network for Gene Expression Data Classification

  • Popis výsledku v původním jazyce

    The results of research regarding the development of a gene expression data classification system based on a convolutional neural network are presented. Gene expression data of patients who were studied for lung cancer were used as experimental data. 156 patients were studied, of which 65 were identified as healthy and 91 patients were diagnosed with cancer. Each of the DNA microchips contained 54,675 genes. Data processing was carried out in two stages. In the first stage, 10,000 of the most informative genes in terms of statistical criteria and Shannon entropy were allocated. In the second stage, the classification of objects containing as attributes the expression of the allocated genes was performed by using a convolutional neural network. The obtained diagrams of the data classification accuracy during both the neural network model learning and validation indicate the absence of the network retraining since the character of changing the accuracy and loss values on trained and validated subsets during the network learning procedure implementation is the same within the allowed error. The analysis of the obtained results has shown, that the accuracy of the object?s classification on the test data subset reached 97%. Only one object of 39 was identified incorrectly. This fact indicates the high efficiency of the proposed model

  • Název v anglickém jazyce

    Application of Convolutional Neural Network for Gene Expression Data Classification

  • Popis výsledku anglicky

    The results of research regarding the development of a gene expression data classification system based on a convolutional neural network are presented. Gene expression data of patients who were studied for lung cancer were used as experimental data. 156 patients were studied, of which 65 were identified as healthy and 91 patients were diagnosed with cancer. Each of the DNA microchips contained 54,675 genes. Data processing was carried out in two stages. In the first stage, 10,000 of the most informative genes in terms of statistical criteria and Shannon entropy were allocated. In the second stage, the classification of objects containing as attributes the expression of the allocated genes was performed by using a convolutional neural network. The obtained diagrams of the data classification accuracy during both the neural network model learning and validation indicate the absence of the network retraining since the character of changing the accuracy and loss values on trained and validated subsets during the network learning procedure implementation is the same within the allowed error. The analysis of the obtained results has shown, that the accuracy of the object?s classification on the test data subset reached 97%. Only one object of 39 was identified incorrectly. This fact indicates the high efficiency of the proposed model

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes on Data Engineering and Communications Technologies

  • ISBN

    978-3-031-16202-2

  • ISSN

    2367-4512

  • e-ISSN

  • Počet stran výsledku

    21

  • Strana od-do

    3-24

  • Název nakladatele

    Springer Nature

  • Místo vydání

    Basel

  • Místo konání akce

    Zalizniy Port

  • Datum konání akce

    23. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku