Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897656" target="_blank" >RIV/44555601:13440/23:43897656 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceur-ws.org/Vol-3373/" target="_blank" >https://ceur-ws.org/Vol-3373/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques

  • Popis výsledku v původním jazyce

    Creating a system of complex disease diagnosis based on gene expression data using modern data mining and machine learning techniques is one of the topical areas of recent bioinformatics. The main problem in this subject area consists of a large volume of experimental data; each investigated object contains approximately 20000 genes. In this paper, we propose the technique of both formation and analysis of gene expression data based on the joint use of various computational and intelligent methods of complex data processing. As the experimental data, we use the gene expression data of patients who were investigated for various types of cancer diseases. Initially, the data was formed and analyzed using the functions and modules of TCGAbiolinks and Bioconductor packages. Then, the non-informative genes in terms of both the statistical and entropy criteria were removed from the initial database. To identify the level of significance of gene expression profiles, we have applied the general Harrington desirability index, which contains, as the components, transformed statistical and entropies criteria. Finally, we applied the random forest classifier and convolutional neural network with the calculation of various types of classification quality criteria for the binary and multi-classification of the investigated objects in the first and the second cases, respectively. Analyzing the simulation results has shown that the identification accuracy of the examined samples is high in all cases. To our mind, the proposed technique creates the basis for improving complex disease diagnosis systems based on gene expression data.

  • Název v anglickém jazyce

    Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques

  • Popis výsledku anglicky

    Creating a system of complex disease diagnosis based on gene expression data using modern data mining and machine learning techniques is one of the topical areas of recent bioinformatics. The main problem in this subject area consists of a large volume of experimental data; each investigated object contains approximately 20000 genes. In this paper, we propose the technique of both formation and analysis of gene expression data based on the joint use of various computational and intelligent methods of complex data processing. As the experimental data, we use the gene expression data of patients who were investigated for various types of cancer diseases. Initially, the data was formed and analyzed using the functions and modules of TCGAbiolinks and Bioconductor packages. Then, the non-informative genes in terms of both the statistical and entropy criteria were removed from the initial database. To identify the level of significance of gene expression profiles, we have applied the general Harrington desirability index, which contains, as the components, transformed statistical and entropies criteria. Finally, we applied the random forest classifier and convolutional neural network with the calculation of various types of classification quality criteria for the binary and multi-classification of the investigated objects in the first and the second cases, respectively. Analyzing the simulation results has shown that the identification accuracy of the examined samples is high in all cases. To our mind, the proposed technique creates the basis for improving complex disease diagnosis systems based on gene expression data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CEUR Workshop Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    87-98

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    Germany

  • Místo konání akce

    Khmenytskyi

  • Datum konání akce

    22. 3. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku