Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897656" target="_blank" >RIV/44555601:13440/23:43897656 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3373/" target="_blank" >https://ceur-ws.org/Vol-3373/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques
Popis výsledku v původním jazyce
Creating a system of complex disease diagnosis based on gene expression data using modern data mining and machine learning techniques is one of the topical areas of recent bioinformatics. The main problem in this subject area consists of a large volume of experimental data; each investigated object contains approximately 20000 genes. In this paper, we propose the technique of both formation and analysis of gene expression data based on the joint use of various computational and intelligent methods of complex data processing. As the experimental data, we use the gene expression data of patients who were investigated for various types of cancer diseases. Initially, the data was formed and analyzed using the functions and modules of TCGAbiolinks and Bioconductor packages. Then, the non-informative genes in terms of both the statistical and entropy criteria were removed from the initial database. To identify the level of significance of gene expression profiles, we have applied the general Harrington desirability index, which contains, as the components, transformed statistical and entropies criteria. Finally, we applied the random forest classifier and convolutional neural network with the calculation of various types of classification quality criteria for the binary and multi-classification of the investigated objects in the first and the second cases, respectively. Analyzing the simulation results has shown that the identification accuracy of the examined samples is high in all cases. To our mind, the proposed technique creates the basis for improving complex disease diagnosis systems based on gene expression data.
Název v anglickém jazyce
Formation and Analysis of Gene Expression Data Based on the Joint Use of Data Mining and Machine Learning Techniques
Popis výsledku anglicky
Creating a system of complex disease diagnosis based on gene expression data using modern data mining and machine learning techniques is one of the topical areas of recent bioinformatics. The main problem in this subject area consists of a large volume of experimental data; each investigated object contains approximately 20000 genes. In this paper, we propose the technique of both formation and analysis of gene expression data based on the joint use of various computational and intelligent methods of complex data processing. As the experimental data, we use the gene expression data of patients who were investigated for various types of cancer diseases. Initially, the data was formed and analyzed using the functions and modules of TCGAbiolinks and Bioconductor packages. Then, the non-informative genes in terms of both the statistical and entropy criteria were removed from the initial database. To identify the level of significance of gene expression profiles, we have applied the general Harrington desirability index, which contains, as the components, transformed statistical and entropies criteria. Finally, we applied the random forest classifier and convolutional neural network with the calculation of various types of classification quality criteria for the binary and multi-classification of the investigated objects in the first and the second cases, respectively. Analyzing the simulation results has shown that the identification accuracy of the examined samples is high in all cases. To our mind, the proposed technique creates the basis for improving complex disease diagnosis systems based on gene expression data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
12
Strana od-do
87-98
Název nakladatele
CEUR-WS
Místo vydání
Germany
Místo konání akce
Khmenytskyi
Datum konání akce
22. 3. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—