Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897055" target="_blank" >RIV/44555601:13440/23:43897055 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-031-16203-9_2" target="_blank" >http://dx.doi.org/10.1007/978-3-031-16203-9_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-16203-9_2" target="_blank" >10.1007/978-3-031-16203-9_2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy

  • Popis výsledku v původním jazyce

    The paper presents the results of the research regarding the application of a fuzzy logic inference system to form the co-expressed gene expression profiles based on the joint use of Shannon entropy and statistical criteria. The allocation of co-expressed genes can allow us to increase the disease diagnosis accuracy on the one hand and, reconstruct the qualitativegene regulatory networks on the other hand. To solve this problem, we have proposed the joint use of the fuzzy logicinference system and random forest classifier. In beginning, we have calculated for each of the gene expression profiles themaximum expression values, variance and Shannon entropy. These parameters were used as the input ones for the fuzzylogic inference system. After setting the fuzzy membership functions for both the input and output parameters, the modelformalization including fuzzy rules formation, we have applied the model to gene expression data which included initially the54675 genes for 156 patients examined at the early stage of lung cancer. As a result of this step implementation, we haveobtained the four subsets of gene expression profiles with various significance levels. To confirm the obtained results, wehave applied the classification procedure to investigated samples that included as the attributes the allocated genes. Theanalysis of the classification quality criteria allows us to conclude about the high effectiveness of the proposed technique tosolve this type of task.

  • Název v anglickém jazyce

    Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy

  • Popis výsledku anglicky

    The paper presents the results of the research regarding the application of a fuzzy logic inference system to form the co-expressed gene expression profiles based on the joint use of Shannon entropy and statistical criteria. The allocation of co-expressed genes can allow us to increase the disease diagnosis accuracy on the one hand and, reconstruct the qualitativegene regulatory networks on the other hand. To solve this problem, we have proposed the joint use of the fuzzy logicinference system and random forest classifier. In beginning, we have calculated for each of the gene expression profiles themaximum expression values, variance and Shannon entropy. These parameters were used as the input ones for the fuzzylogic inference system. After setting the fuzzy membership functions for both the input and output parameters, the modelformalization including fuzzy rules formation, we have applied the model to gene expression data which included initially the54675 genes for 156 patients examined at the early stage of lung cancer. As a result of this step implementation, we haveobtained the four subsets of gene expression profiles with various significance levels. To confirm the obtained results, wehave applied the classification procedure to investigated samples that included as the attributes the allocated genes. Theanalysis of the classification quality criteria allows us to conclude about the high effectiveness of the proposed technique tosolve this type of task.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes on Data Engineering and Communications Technologies

  • ISBN

    978-3-031-16202-2

  • ISSN

    2367-4512

  • e-ISSN

  • Počet stran výsledku

    17

  • Strana od-do

    25-41

  • Název nakladatele

    Springer Nature

  • Místo vydání

    Basel

  • Místo konání akce

    Zalizniy Port

  • Datum konání akce

    23. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku