Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897055" target="_blank" >RIV/44555601:13440/23:43897055 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-16203-9_2" target="_blank" >http://dx.doi.org/10.1007/978-3-031-16203-9_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16203-9_2" target="_blank" >10.1007/978-3-031-16203-9_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy
Popis výsledku v původním jazyce
The paper presents the results of the research regarding the application of a fuzzy logic inference system to form the co-expressed gene expression profiles based on the joint use of Shannon entropy and statistical criteria. The allocation of co-expressed genes can allow us to increase the disease diagnosis accuracy on the one hand and, reconstruct the qualitativegene regulatory networks on the other hand. To solve this problem, we have proposed the joint use of the fuzzy logicinference system and random forest classifier. In beginning, we have calculated for each of the gene expression profiles themaximum expression values, variance and Shannon entropy. These parameters were used as the input ones for the fuzzylogic inference system. After setting the fuzzy membership functions for both the input and output parameters, the modelformalization including fuzzy rules formation, we have applied the model to gene expression data which included initially the54675 genes for 156 patients examined at the early stage of lung cancer. As a result of this step implementation, we haveobtained the four subsets of gene expression profiles with various significance levels. To confirm the obtained results, wehave applied the classification procedure to investigated samples that included as the attributes the allocated genes. Theanalysis of the classification quality criteria allows us to conclude about the high effectiveness of the proposed technique tosolve this type of task.
Název v anglickém jazyce
Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System,Statistical Criteria and Shannon Entropy
Popis výsledku anglicky
The paper presents the results of the research regarding the application of a fuzzy logic inference system to form the co-expressed gene expression profiles based on the joint use of Shannon entropy and statistical criteria. The allocation of co-expressed genes can allow us to increase the disease diagnosis accuracy on the one hand and, reconstruct the qualitativegene regulatory networks on the other hand. To solve this problem, we have proposed the joint use of the fuzzy logicinference system and random forest classifier. In beginning, we have calculated for each of the gene expression profiles themaximum expression values, variance and Shannon entropy. These parameters were used as the input ones for the fuzzylogic inference system. After setting the fuzzy membership functions for both the input and output parameters, the modelformalization including fuzzy rules formation, we have applied the model to gene expression data which included initially the54675 genes for 156 patients examined at the early stage of lung cancer. As a result of this step implementation, we haveobtained the four subsets of gene expression profiles with various significance levels. To confirm the obtained results, wehave applied the classification procedure to investigated samples that included as the attributes the allocated genes. Theanalysis of the classification quality criteria allows us to conclude about the high effectiveness of the proposed technique tosolve this type of task.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes on Data Engineering and Communications Technologies
ISBN
978-3-031-16202-2
ISSN
2367-4512
e-ISSN
—
Počet stran výsledku
17
Strana od-do
25-41
Název nakladatele
Springer Nature
Místo vydání
Basel
Místo konání akce
Zalizniy Port
Datum konání akce
23. 5. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—