Rozptylový model pro kvantové náhodné procházky na hyperkostkách
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00013047" target="_blank" >RIV/00216224:14330/05:00013047 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scattering model for quantum random walks on a hypercube
Popis výsledku v původním jazyce
Following a recent work by Hillery et al. [Phys. Rev. A 68, 032314 (2003)], we introduce a scattering model of a quantum random walk (SQRW) on a hybercube. We show that this type of quantum random walk can be reduced to the quantum random walk on the line and we derive the corresponding hitting amplitudes. We investigate the scattering properties of the hypercube, connected to the semi-infinite tails. We prove that the SQRW is a generalized version of the coined quantum random walk. We show how to implement the SQRW efficiently using a quantum circuit with standard gates. We discuss one possible version of a quantum search algorithm using the SQRW. Finally, we analyze symmetries that underlie the SQRW and may simplify its solution considerably.
Název v anglickém jazyce
Scattering model for quantum random walks on a hypercube
Popis výsledku anglicky
Following a recent work by Hillery et al. [Phys. Rev. A 68, 032314 (2003)], we introduce a scattering model of a quantum random walk (SQRW) on a hybercube. We show that this type of quantum random walk can be reduced to the quantum random walk on the line and we derive the corresponding hitting amplitudes. We investigate the scattering properties of the hypercube, connected to the semi-infinite tails. We prove that the SQRW is a generalized version of the coined quantum random walk. We show how to implement the SQRW efficiently using a quantum circuit with standard gates. We discuss one possible version of a quantum search algorithm using the SQRW. Finally, we analyze symmetries that underlie the SQRW and may simplify its solution considerably.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F04%2F1153" target="_blank" >GA201/04/1153: Kvantové zdroje a primitiva</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
1050-2947
e-ISSN
—
Svazek periodika
Vol. 71
Číslo periodika v rámci svazku
No. 1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
"A012306"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—